CAPLPS

& hmpp

HMPP Directives

HMPP Workbench 3.0

"'
&

{;;l.- -

q/

' T

"y e

IDDN.FR.001.490007.000.S.P.2008.000.10600
This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without

authorization.

Headquarters — France
Immeuble CAP Nord
4A Allée Marie Berhaut
35000 Rennes

France

Tel.: +33 (0)2 22 51 16 00
Fax: +33 (0)2 23 20 16 43

info@caps-entreprise.com

N° d’"agr ément
53 3508397 35

CAPS — USA

4701 Patrick Drive Bldg 12
Santa Clara

CA 95054

Tel.: +1 408 550 2887 x70

usa@caps-entreprise.com

f or

CAPS — CHINA

Suite E2, 30/F

JuneYao International Plaza
789, Zhaojiabang Road,
Shanghai 200032

Tel.: +86 21 3363 0057
Fax: +86 21 3363 0067

apac@caps-entreprise.com

Visit our website: http://www.caps-entreprise.com

7 4 HMPP Directives

CAPS
SUMMARY
1. Introduction 7
2. HMPP Overview 8
2.1. HMPP Development WOrkbhenCh OVEIVIEW.........coiiiiiiiiiiiee ettt e e e e neenee e e s 8
2.2. HMPP RUNUME OVEIVIEBWoviiiiiiiiic it 9
P T o 1Y o oo =T o [T = 1 (0] TP PUPPPTPPP 9
3. HMPP Concept 10
G TR I e U= o 11w @ o [=] @ 0] o o= | 10
3.1.1. Execution Error with Synchronous Codelet RPCs 11
3.1.2. Execution Error with Asynchronous Codelet RPCs 12
3.2, HIMPP RUNTIMIE ... tiiieiitiiite ettt st e e e e sttt e e ettt e a4ttt e e e st bt e e e sttt e e e st et e e e st beeeenbbaeesnnnneeas 12
3.3, HMPP MEMOTY IMOUEL. ...ttt e et e et e e 12
4. HMPP Directives 14
ot [o1 (o o [UTo{ 1 o] IO PPPPRPP PP 14
4.2, ConCept Of SEL OF AIFECTIVESeiiiiiiiiee ettt e e 15
4.3, SyntaxX Of the HMPP diF€CHIVESueiiiiiiiit ettt 15
4.4, Factorizing directive arguments: the with dir€CtiVecooiiiiiii 19
4.5. Directives for Implementing the Remote Procedure Callon a HWA.............ooo oo, 20
45.1. codelet directive 20
4.5.2. group directive 24
45.3. callsite directive 25
4.5.4. synchronize directive 25
455. acquire directive 26
4.5.6. release directive 26
45.7. allocate directive 27
45.8. free directive 28
4.6. Controlling Data Transfer between the Host CPU and the HWA ..., 29
4.6.1. advancedload directive 29
4.6.2. delegatedstore directive 31
4.6.3. Asynchronous transfers 33
4.6.4. Array section in HMPP 34

3/86

~r HMPP Directives

CAPS
N I - V0) (=T g oo o] [TS PEUPT T 36
4.7.1. atcall transfer policy 36
4.7.2. atfirstcall transfer policy 37
4.7.3. manual transfer policy 38
4.7.4. automatic transfer policy 39
4.7.5. disregard directive 41
4.8. HMPP data GECIAIATION.......eitiiie ittt e et e e e e e b et e e e e e e e e et e e e e e e e s e annnnee s 45
4.8.1. mapdirective 45
4.8.2. mapbyname directive 46
4.8.3. resident directive 47
4.8.4. Data mirroring directives 49
4.9. Parallel directive (Using multiple HWA DEVICES)coeiiiiiiiiiiee ettt a e 51
4.10. ReQIONS IN HMP P L. 52
4.11. External and Native TUNCLIONSc.uriiiiiiiiieiiei ettt s e e 55
5. Supported Languages 56
o 00 I [T 11 | o o = 56
5.1.1. Supported C Language Constructs 56
5.1.2. Parameter Passing Convention for C Codelets 57
5.1.3. Inlined functions 57
5.1.4. Atomic intrinsic functions 57
2 [o] o101 @ T i = ¥ AN A o o [59
5.2.1. Supported FORTRAN Language Constructs 59
5.2.2. Unsupported statements in codelet 68
5.2.3. Parameter Passing Convention for FORTRAN codelets 68
5.2.4. Known limitations 68
6. HMPP Codelet Generators 69
6.1, CUDA GENEIALONeiiiiiiieii ittt e e e e e e e e s et e e e e e e s e e e e e e e e e s e b bbb e e e e e e s s s naabreeeeaees 69
I O o 1= o 1@ 7T T = o T 69
RS O = To T To T @o 01V =T o1 1T o O PRSP 69
6.3.1. CUDA Codelet Generator 69
6.3.2. OPENCL Codelet Generator 70
7. Compiling HMPP Applications 72
7.1, OVeIVIeW....cccovveeennn T o O i, O S S A R R 72
7.2. Common Command LiNe ParamELEISciuuiiiiiiiiiiiiiee ettt et e s es 73
7.2.1. General Options 73

4/86

~r HMPP Directives

CAPS
7.2.2. Host compiler options 74
7.2.3. Report option 74
7.2.4. HMPP codelet generation options 74
7.2.5. HMPP native function compilation 75
7.2.6. HMPP external function compilation 75
7.2.7. HMPP codelet compilation: proprietary compiler options 76
7.2.8. HMPP miscellaneous options 76
7.2.9. _ HMPP predefined macro 76
7.2.10. HMPP Environment Variables 76
8. Running HMPP Applications 77
9. Supported Platforms and Compilers 78
10. HMPP Installation 79
11. Annexes 80
ANNEX L. GlOSSAIY ..cciiiiiiieieeeeeee et 80
F N a0 1> =11][To o =] APPSR 82
ANNEX 3. LISE OF FIQUIES .oeeeiiiitiiie ettt e e ettt e e e e e s e sttt e e e e e e eanbs e eeeaeeeeansneneeaaaeeenanns 83
ANNEX 4. LIS OF LISTINGS eeeeieiiiiititie it e ettt ettt ettt e oo s ekttt et e e o4 e bbbttt e e e e e s st b bttt e e e e e e anbbbbeeeaeeeeann 84
ANNEX 5. LISE OF TABIES...ciiiiiie ettt e e e e ettt e e e e e e e e bbb be e e e e e e e ana 86

5/86

CAPS

Revisions history

HMPP Directives

V2.4.0

V2.4.1

V2.4.2

V2.4.3

V2.4.4

V2.5.0

V2.5.1

V2.5.2

Vv3.0.0

Vv3.0.1

Vv3.0.2

v3.0.3

15/11/2010

24/12/2010

28/01/2011

04/03/2011

24/03/2011

16/06/2011

07/07/2011

06/06/2011

16/12/2011

12/01/2012

20/01/2012

25/01/2012

CAPS entreprise

CAPS entreprise

CAPS entreprise

CAPS entreprise

CAPS entreprise

CAPS entreprise

CAPS entreprise

CAPS entreprise

CAPS entreprise

CAPS entreprise
CAPS entreprise

CAPS entreprise

Restructuration of the documentation
All (from version 2.3.5)
84.5.1, 84.7.4, Addition of the automatic data transfer
§4.7.4 mode for codel et s
50 Automatic detection of Inputs and
Outputs in HMPP region
§3.4.1 Correction on Listing 8
§4.1.2 Clarification on parameter passing
convention
Addition of Intel FORTRAN Compiler
for Windows
CAPS entreprise
Addition of Absoft
Compiler for Windows
84.7.4 Additional information on automatic
data transfer
§4.11 §7.2.5 Addition of external and native
§7.2 6 " functions
§7.2.9 __HMPP predefined macro
Typography corrections
84.6.2 Add asynchronous clause for
delegatedstore directive
§4.6.3 Addition of asynchronous data
transfers
New HMPP directives:
84.5.5 1 acquire
§4.5.8 1 free
§4.8.4 § Addition of data mirroring
§4.9 1 Multiple devices management
§4.7 Data transfer policies
§5.1.4 Supported atomic functions

Typography corrections

Link reference corrections

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 6/86

-y

HMPP Directives
CAPS

1. Introduction

Warning:

HMPP 3.0.0 only supports the CUDA target for codelet generation. The OpenCL target will be supported
current Q1 2012 (currently available in HMPP 2.5.x).

For convenience, the text referencing the two targets was left in state. In HMPP 3.0.0, only the CUDA target
is to be considered.

The Hybrid Multicore Parallel Programming workbench (HMPP) provides developers with a set of tools
dedicated to build parallel hybrid applications running on manycore systems. These architectures combine
general purpose cores with hardware accelerators (HWAs) such as GPUs or SIMD computing units.

HMPP allows the programmer to write hardware independent applications where hardware specific codes
are dissociated from the legacy code as additional software plug-ins. Contrary to applications that have been
explicitly written for a target architecture, HMPP produces applications that execute on various hardware
platform configurations, whether a HWA is present or not. Hardware-accelerated versions of functions are
executed if the accelerator is present and available, otherwise their native versions are run.

The present document introduces the main HMPP concepts and describes the HMPP directives. This
document comes in addition to the following manuals:

A HMPP Basics ([R1]). This document introduces the main HMPP concepts.

A HMPP Codelet Generator Directives, Reference Manual ([R3]). This manual
describes how to enhance your codelet generation by using HMPPCG directives. An HMPP
preprocessor allowing users to factorize HMPP directives is also described;

A HMPP Linux Manual ([R5]). This manual describes how to compile and run your application on

Linux platforms. It also introduces the compilers and Operating Systems supported,;
A HMPP License Installation Guide ([R6]). This manual presents the procedure to set the
HMPP license on your system.

The remainder of this document is organized as follow:

Chapter 3 presents the main concepts of HMPP,
Chapter 4 introduces the HMPP directives,

Chapter 5 describes the supported languages,
Chapter 6 presents the HMPP codelets Generators

A Chapter 7 is dedicated to the compilation flow process.

LB D D D

A glossary can be found at the end of the document.

It should be noted that most of the examples provided in this document are based on the CUDA backend
generator for historical reasons. The functionalities offered by HMPP are the same for all the backend
generators marketed by CAPS entreprise.

When necessary, CAPS will specify in the text if a feature is dependent of a given material.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 7/86

~ HMPP Directives

CAPS

2. HMPP Overview

Based on a set of directives, the HMPP Workbench contains C and FORTRAN compiler drivers, target code
generators (CUDA, OPENCL) and a runtime for the execution of parallel hybrid applications.

To accelerate the execution of your application with HMPP, the first step is to identify the parts of the
application source code to speed up. Those sectbdnl3.1)become
using the HMPP directives. The hardware-accelerated versions of the codelet are defined in their specific

language i.e. C or FORTRAN and using the same programming model. They are hand-written by the user or
automatically produced by the HMPP codelet generators and compiled with the compilers of the HWA

vendor.

The HMPP annotated source code is parsed by the HMPP preprocessor to extract the codelets and to
translate the HMPP directives into calls to the HMPP runtime. The preprocessed code is then compiled and
linked with the HMPP runtime using the host compiler. The HMPP runtime is in charge of managing the
concurrent execution of the codelets.

When no HWA implementation of a codelet is found or if the chosen HWA is not available, the HMPP
runtimeexecutes the native version instead. So, the execut

Figure 1 shows the general workflow of an HMPP application. The left flow path shows how an annotated
codelet is compiled for a given HWA. The right flow path shows the compilation of the rest of the application
compiled and run using the C or FORTRAN compiler on the host.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 8/86

HMPP Directives
CAPS

void myFunctionToSpeedUp (float *in, float *out)}{
Application ... codelet body...
Original code }

|

#pragma hmpp rpclabel codelet target=CUDA, ...

void myFunctionToSpeedUp (float *in, float *out){
... codelet body...

}

Codelet / \

#pragma hmpp rpclabel codelet target=CUDA, ... HMPP
void myFunctionToSpeedUp (float *in, float *out){
... codelet body... preprocessor

}
HMPP
generator

HWA
compiler
. HMPP
| Dynamic library Linker runtime

\\. Executable /

General

purpose
compiler

Figure 1 - Workflow overview of the HMPP workbench

The HMPP runtime is the dynamic library in charge of the execution of the remote procedure calls to the
HWA. Linked to the application, this library initializes the HWA, allocates memory, relays communications
between the host and the HWA and manages the execution of codelets.

HMPP workbench provides users with back-end code generators. These code generators are specifically
designed to extract the most of data parallelism from your C and FORTRAN kernels and translate them into
NVIDIA CUDA or OPENCL (Open Computing Language) allowing to run your applications on various
systems.

The code generators marketed by CAPS entreprise are:

A CUDA for NVIDIA GPU systems;
A OPENCL for NVIDIA and AMD ATI Stream GPU systems.

It should be noted that hardware constructors do not offer the same level of functionalities with the OpenCL

framework. For the execution of their applications, end-users will pay attention to get the most recently

drivers for their HWA in order to take advantage of the state-of-the-a r t of har dwar e cor
development.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 9/86

~ HMPP Directives

CAPS

3. HMPP Concept

HMPP is based on the concept of codelets, functions that can be remotely executed on HWAs. The HMPP
runtime library is in charge of calling the remote procedure (RPCs) as well as managing resources.

In version 2.0, HMPP introduced the facility of defining a group of codelets allowing the programmer to share
data between codelets that are distinct and may run at very different times on the HWA.

As usual with directive-based programming environments, it is important to note that the HMPP development
workbench does not check for incorrect usage of the directives. Misuse of the HMPP directives may lead to
erroneous results.

A codelet is a computational part of a program located in a function inside the application. It takes several
scalars and array parameters, performs a computation on these data and returns. The result of the
computation is passed by some parameters given by reference (INPUT(inout) in FORTRAN and pointers and
arrays in C). The function does not support any return code (it is like a subroutine procedure in FORTRAN
and void functions in C). The execution of a codelet is considered as atomic: the execution does not have an
identified intermediate state or data. The execution has no side effects.

The transfer of codelet parameters is performed via the HMPP Runtime protocol. The size of all parameters
must be known® before the transfer of any parameter, and obviously before the codelet execution.

A codelet has the following properties:
1. Itis a pure function.

a. It does not contain static or volatile variable declarations nor refer to any global variables except if
these have been decl arresitlenby al sHMP &S3dpnasdetails an
this subject).

b. It does not contain any function calls with an invisible body (that cannot be inlined). This includes
the use of libraries and system functions such as malloc, printf, ...

c. Every function call must refer to a static pure function (no function pointers).

2. It does not return any value (void function in C or a subroutine in FORTRAN).

3. The number of arguments should be fixed (i.e. no variable number of arguments like vararg in C).
4. Itis not recursive.

5. Its parameters are assumed to be non-aliased.

6. It does not contain callsite directives (i.e. RPC to another codelet) or other HMPP directives.

These properties ensure that a codelet RPC can be remotely executed by a HWA. This RPC and its
associated data transfers can be asynchronous.

By default, all the parameters are uploaded to the HWA just before the RPC and downloaded just after its
execution has completed.

! The scalar arguments and arrays which size is constant and statically evaluable by HMPP do not require
the user to specify their size.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 10/86

-y

HMPP Directives
CAPS

Below is an example of a correct codelet:

#pragma hmpp testlabell codelet, target=CUDA, ar gs[vl].io=out
static void codeletOk(int n, float vi[n], float v2[n], float v3[n]) {
int i;

for(i=0;i<n;i++){
v1[i] = v2[i] + v3[i];

Listing 1 - Codelet definition
The following examples are incorrect codelet definitions or uses:

A Use of a global variable in a codelet body: since the memory between the HWA and the CPU
is not shared, a global variable cannot be used in a codelet.

#pragma hmpp testlabell codelet, target=CUDA , args[vl].io=out
static void codeletNotOk(int n, float v1[n], float v2[n], float v3[n]) {
inti;
for(i=0;i<n;i++){
Vv1[i] = v2[i] + v3[i]* globalVarfi];

% ¢

Listing 2 - Wrong codelet definition due to the use of a global variable

To fix the error, the global variable needs to be passed as a parameter to the codelet or to be declared as a
“resident ” vari abl e 48.8ferenore detilg)t e r

A Aliasing between parameters: the following code produces an erroneous result due to the
aliasing betweenviandv2t hat point to the same call ealsitpal amet e
level). On the device, the parameters are in independent data structures.

1 /* Legal codele t declaration */

2 #pragma hmpp testlabell codelet, target=CUDA, args[v1].io=inout
3 static void codeletNotOk(int n,

4 float v1[n],

5 float v2[n],

6 float v3[n]) {

7 int i;

8 for (i=1;i<n;i++){

9 vi[i] = v2[i -1] +v3Ji];

10 }

11 }

12

13 int main(int argc, char **argv) {

14

15 [* wrong codelet use: the first two vectors are the same array */
16

17 #pragma hmpp testlabell callsite

18 codeletNotOk (n, t1, t1,t3);

;g | @

Listing 3 - Wrong codelet definition due to aliasing between parameters

In the case of a synchronous codelet RPC (default), when an error occurs during the hardware allocation,
memory loading, or during a codelet call, the runtime API reverts back to the native codelet to resume the
execution. This is illustrated in Figure 2.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 11/86

~ HMPP Directives

CAPS

In asynchronous mode, if a codelet execution fails, the application stops with an error code. In that mode it is
not possible to restore the program state, as the effect of executed instructions between the codelet call site
and the synchronization barrier are not known and cannot be cancelled. This is illustrated in Figure 2.
However, if an error occurs during the memory allocation or during data transfer (the most common cases)
the execution of the codelet is cancelled and the HMPP native codelet is executed.

Asynchronous data transfer or asynchronous codelet execution are hardware accelerator dependent.

Synchronous RPC Asynchronous RPC

MAIN PROCESSOR Marn PROCESSOR

HWA E, HWA

riginal execution stops

Figure 2 - Synchronous versus asynchronous RPC

The HMPP runtime is in charge of carrying out the concurrent execution of the native and HWA
implementations of the codelets.

At execution, the HMPP runtime detects the available HWAs. When a codelet or a group of codelets is
specified to run on a HWA, if a device is available and if the corresponding group of codelets or the codelet
implementation is present, the HMPP runtime loads it as a software plug-in. It is not necessary to build a
machine-specific version of the host application. The HMPP runtime is able to manage simultaneously
multiple and various HWAs.

If an improved version of a codelet is available, the HMPP runtime loads that in place of the previous codelet
implementation without any recompilation of the application.

In the current version of HMPP, the memory address managed at the host level and at the HWA level are
different (see Figure 3). T h eAp“p | i camd theoHMPP runtime have their own private memory. HMPP
deals with this in a transparent way for the user. HMPP can be seen as programming glue between target-
specific programming environments and general purpose programming.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 12/86

7 4
CAPS

Application
data

Remote
*rocedure

Application
data

Figure 3 - HMPP memory model

HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 13/86

-y

HMPP Directives
CAPS

4. HMPP Directives

The HMPP directives nianyf olr enaded @nhé apglicatiom souree code. They are
safe meta-information i.e. they do not change the original code. They address the remote execution (RPC) of
a function as well as the transfers of data to/from the HWA memory.

The simplest use case of HMPP directives is composed of two directives made of a codelet declaration and
callsite marker. They are identified by a unique label indicated in each directive. The scope of the label is the
whole application. For instance, in the listing below the directive at line 2, with label testlabel , declares a
CUDA codelet implementation to be run on a NVIDIA GPU. The call to this codelet is marked line 31.

1 .

2 #pragma hmpp testlabel codelet, target=CUDA, args[vout].io=inout
3 static void kernel(unsigned int N, unsigned int M,
4 float vout[N][M], float vin[N][M]){

5 inti,j;

6 for(i=2;i<(N - 2); i++) {

7 for(=2;j<(M -2); j+H) {

8 float temp;

9 temp = vin[i][j]

10 + 0.3f *(vin[i -1 -1]+ vin[i+1][+1])

11 - 0.506f *(vin[i -2l - 2] + vin[i+2][j+2]);

12 vout[i][j] = temp * (vout[i][j]);

13}

14 }

15 }

16 int main(int argc, char **argv){
17 unsigned int n = 100;
18 unsigned int m = 20;
19 inti, j;

20 floa tresultat = 0.0f;
21 float out[n][m];

22 float in[n][m];

23 A

24 /init

25 for(i=0;i<n;i++){
26 for(j=0;j<m;j++t){

27 in[illj] = (COEFF) * (- 1.0f);
28 out[i][j] = (COEFF) + (j * 0.01f) ;

29 }

30 }

31 #pragma hmpp testlabel callsite

32 kernel(n,m,out,in);

33 ..

34 printf("result : %f \ n",resultat);
35}

Listing 4 - HMPP codelet source code example

The Table 1 below introduces the HMPP directives. HMPP directives address different needs: some of them
are dedicated to declarations and others are dedicated to the management of the execution.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 14/86

HMPP Directives

CAPS
Control flow instructions Directives for data management
. A codelet A resident
Declarations . :
A group A map
A function A mapbyname
Operational Directives A callsite . A allocate
A synchronize A free
A region A acquire
A parallel A release
A advancedload
A delegatedstore
A disregard

Table 1 - HMPP Directives

One of the fundamental points of the HMPP approach is the concept of directives and their associated labels
which makes it possible to recreate a coherent structure on a whole set of directives disseminated in an
application.

We distinguish two kinds of labels:

A One associated to a codelet. In general, the directives carrying this kind of labels are limited to the
management of only one codelet (called stand-alone codelet in the remainder of the document to
distinguish it from the group of codelets).

A One associatedtoagroupofcodel et s. | a b edLabel@fGreup n>'t, e dvhags ef o
“LabelOfGroup " is a name specified by the user. In general, the directives which have a label of
this type relate to the whole group.

These

The concept of group is reserved to a class of problems which requires a specific management of the data
throughout the application to obtain performance.

In the following, for each directive, we will present the both notations for:

A A stand-alone codelet context: it means that only one set of directives associated to one codelet is
defined. Note that in an application, several separate set of directives can be defined.

A A group of codelets: means that the set of directives deals with the definition of several codelets in the
same group.

The HMPP directives with different labels do not see each other, i.e. a directive of a given label does not
interfere with a directive using a different label.

Please note that:

Inside a set, directives can only interfere (between them) by sharing data;

A
A No data can be shared between two distinct sets of directives.

In order to simplify the notations, regular expressions will be used to describe the syntax of the HMPP
directives. Below is a short summary of the main notations used.

A A ? The question mark indicates there is no preceding item or one preceding item.
A A * The asterisk indicates there are zero or more the preceding items.
A “+ oThe plus sign indicates that there is one or more the preceding items.

15/86

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization

-y

HMPP Directives
CAPS

Furthermore, to keep the notation as simple as possible, we separately present the notation used in stand-
alone codelet context of the one used with group of codelets. The main difference between the two syntaxes
lies in an additional label dedicated to the management of the groups.

We also introduced a color convention for the description of syntax directives:

A Reserved HMPP keywords are in blue;
A Elements of grammar which can be declined in HMPP keywords are in red;
A User’'s variables remain in black.

In stand-alone codelet context, the general syntax of the HMPP directives is:

A For C language:

#pragma hmpp codelet_label directive_type [, directive_parameters J*[¢&]

A For FORTRAN language:

I$hmpp codelet_label directive_type [, directive_parameters J*[&

In a group of codelets context, the general syntax of the HMPP directives is:

A For C language:

#pragma hmpp <grp_label > [codelet_label]? directive_type [, directive_parameters]*[¢&]
A For FORTRAN language:

I$hmpp < grp_label > [codelet_label]? directive_type [, directive_parameters J*[&)
Where:
A <grp_| abel>: is a unique identifier naming a group of codelets. In cases where no groups are
defined in the application, this label can simply miss.

Legal label name must follow this grammar: [a -z,A-Z, Ja -z,A-Z,0-9,]* Note that the A <
> 0 characters belong to the syntax and are mandatory for this kind of label.

A codelet_label: is a unique identifier naming a codelet
Legal label name must follow this grammar: [a-z,A-Z, Ja -2zA-2Z,0-9,]*

A directive_type: is the type of the directive;

A directive_parameters . designates some parameters associated to the directive_type. These

parameters may be of different kinds and specify either some arguments given to the directive either a
mode of execution (asynchronous versus synchronous for example);
A [&] : is a character used to continue the directive on the next line (same for C and FORTRAN).

This is illustrated below:

A example of a simple codelet declaration with no group definition:

#pragma hmpp codelet_label codelet, &
#pragma hmpp & directive_parameter &
#pragma hmpp & [, directive_parameter 1*

A example of a codelet declaration inside a group:

#pragma hmpp <grp_label > codelet_label codelet, &
#pragma hmpp & directive_parameter &
#pragma hmpp & [, directive_para meter |*

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 16/86

-y

HMPP Directives
CAPS

Furthermore, the directive’'s parameters may themsel ve
arguments apply to the parameters of the function.

In the remainder of this document, we will distinguish these two notions by speaking of:

A Parameters:di recti ves’ par ameter s,
A Arguments: directives parameters’ arguments.
The Figure4i | l ustrates this with an exocatmpl eéndNonaeedfhthas anv:

directive parameter pointstheuser ' s function argument s.

Label Label HMPP Directive Argument of the

of the of the type “jo” parameter
group \ codelet

#pragma hmpp <MyGroup>$abel codelet, args[outv].io=inout, & L. Parameters

1
2
3 #pragma hmpp <MyGroup> target=CUDA of the
directive
4 static void matvec (int sn,
5 int sm,
6 float inv[sm] Paramett_ers of
. : the function
7 float inm[sn][sm],
8 float *outv){
9 snes
10 }
Figure 4 - Description of parameters and arguments in HMPP directives
Val ues of the directives’ parameters can be specified
A Their formal name;
A Or their order in the function definition;
A Or under the form of a range (in case several arguments need to be provided to the directives).
Example:

#pragma hmpp <grp_label > directive_type , args[arg_items].xxx

Wh e raggs[drg_items].xxx " represents the directive’'s parameter
arg_items: AOCMEOAI I pKR AOCMEOAIT +#1
arg_item: IDENTIFIER | NUMBER | arg_range | param_with_ident
AOCMmOAT CAK -p . 55" %%W2 p
DAOAT mxEOEMEAAT Ok EAAT O pkkR Il Yy)$%. 4) &) %2+
ident: codelet_label | *
Where:
A IDENTIFIER: is the name of a parameter in the codelet prototype;
A NUMBERs the numerical position of a function’s argum
prototype.

Listing 5 provides an example where:

args[0 - 1] respectively points out sn and sm,
argsfinv] of course designates inv ,
args[3] designates inm,

etc.

> > > >

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 17/86

-y

CAPS HMPP Directives
1 #pragma hmpp simplel codelet , args[0-1;inv].io=in, &
2 #pragma hmpp & args[3].io=in, &
3 #pragma hmpp & args[outv].io=inout, &
4 # pragma hmpp & target=CUDA
5 static void matvec(int sn, int sm,
6 float inv[sm], float inm[sn][sm],
7 float *outv){
8 ...
9}

Listing5-Di recti veds par ams(cae of stand-alane gpdebeenotation)

The following constructions are also legal:

#pragma hmpp <MyGroup> delegatedstore, args[*:: var_b]

Thefidel e gat e ddirectve is applied on all the variables i v a r _defided in the group i My Gr ou p 0
(¢ o d eplarameters and resident variables if any).

Example:

#pragma hmpp <MyGroup> delegatedstore, args[:: MyResidentVarData ; codl:: var_a;*: var_b]

Thefidel egat e ddirective is @pplied on the group i My Gr oan fhé following variables:

A theresidentdatafi Mgesi dent Var Dat ao;
A thefiv ar _asgdmentof the codeleti c od 10 ;
A all the arguments called i v a r _dbfided in the group i My Gr ou p 0

Please note that when many parameters of a same codelet are referenced, the following notation is also
supported:

#pragma hmpp <M/Group> delegatedstore, args| codl:var_a ;codl:ivar_b]
is equivalent to:

#pragma hmpp <MyGroup> codl delegatedstore, args| var_a;var_b |

The codelet label i ¢ o d has been moved at the beginning of the directive and has been removed from the
variable declarations in order to shorten the writing.

Table 2 summarizes the different way to access to the arguments:

By name By rank By range All
(start from 0)
Implicit current | MyArgument 3 0-5 *
scope
Explicit codelet | MyCodelet:MyArgument | MyCodelet::3 MyCodelet::0-7 MyCodelet::*
scope
EXpliCit resident | ::MyResidentVariable ek
scope
Global scope *:MyVariable o

Table 2 - Access to HMPP arguments according to their scope

In the remainder of this document, most examples of directives will be given in C. FORTRAN directives only
differ by their prefix.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 18/86

-y

HMPP Directives
CAPS

In FORTRAN and C languages, directives are case insensitive.

When using e.g. the multi-device allocation and execution capabilities of HMPP, several directive parameters
end up getting duplicated.

The with directive allows to add some parameters to the directives of a given scope.

The syntax of the directive is:

#pragma hmpp with

[, asynchronous J*
[, exclusive]*

[, device ="device_num"] *

[, elementsize ="expr'T*

[, size={ dimsize[,dimsize]* H*

[.args[arg_items].section={ [subscript_triplet D

Where:

p>N

> >

p>N

asynchronous 2: indicates that the transfer can be performed asynchronously, meaning that it is a

non-blocking transfer.

exclusive . specifies that the HWA should be locked to the given codelet or grouplet until it is
unlocked with the release directive. When locked, the HWA will not be available for use by other
codelets or grouplets, as well as to other thread or processes.

device="device_number" : gives the number of the device on which all data should be allocated.
This is mainly useful when dispatching computations over multiple devices®.

el ement si z e =dpexrikep thedelement size (for data mirrors allocation mainly).
args[arg_items].size= { dimsize[,dimsize]* } . specifies the size of a non-scalar parameter
(an array). Each dimsize provides the size for one dimension. dimsize must be a simple
expression depending only of the scalar arguments of the codelets.
args[arg_items].section={[subscript_triplet,]+]* : indicates that only an array section
will be transferred to the device. See section 4.6.4 - Array section in HMPP on page 34 for further
details.

The example below give an example of the utilization of the with directive:

#pragma hmpp with size={100}, elementsize="sizeof(float)", device="i%2"

for
// Declaration, then allocation of data mirrors on alternative devices
#pragma hmpp f allocate, data["&x[i][0]"]
#pragma hmpp f allocate, data["&y[i][0]"]
/I upload of data based on the address
#pragma hmpp f adva ncedload, data["&x[i][0]","&y[i][0]"]

}

(i=0;i<4; ++){

Figure 51 An example of the utilization of the with directive: using the with directive in the mirror allocation loop of Listing 34

on page 52

2 Target dependent. For more details, see section 4.6.3-Asynchronous transfers on page 35.

% See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 19/86

~ HMPP Directives

CAPS

Using a HWA consists in a remote procedure call. A set of directives controls the implementation of the

RPC*:

1. The codelet directive marks a function as a codelet with the properties of its parameters (inputs and

outputs).
2. The callsite directive declares the call to the codelet that is remotely executed.

A codelet directive specifies that a version of the function following must be optimized for a given hardware.

Its label must be unique in the application.
For the codelet directive:

A The codelet label is mandatory
A The group label is not required if no group is defined.

The codelet directive must be inserted immediately before the function declaration or definition in C,

immediately before the subroutine definition in FORTRAN.

The syntax of the directive is:

For a stand-alone codelet:

#pragma hmpp codelet_label codelet [, args[arg_items].io= [in |out]|inout | none]l*
[,args[arg_items].size={ dimsize[,dimsize]* H*
[,args[arg_items].transfer= [atcall | atfirstcall | manual| auto]
[,cond="expr"]
[, target= target_name [:target _name]*]

*

For a group of codelets:

#pragma hmpp <grp_label > codelet_label codelet [,args[arg_items].io= [in |out]|inout | none]J*
[,args[arg_items].size={ dimsize[,dimsize]* H*
[,args[arg_items].transfer= [atcall|atfirstcalllma nual| auto]]*
[,cond="expr"]
[, target= target_name [:target_name]*|

Where:

A <grp_label>: is a unique identifier associated with all the directives that belong to the group

(definition and use).

A codelet_label . is a unique identifier associated with all the directives that belong to the same

codelet execution (definition and use).

“Furt her details about HMPP's RPC cafRlpbe found

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization

n t

20/86

he

r

e

-y

HMPP Directives
CAPS

A args[arg_items].size= { dimsize[,dimsize]* }: specifies the size of a non-scalar parameter
(an array). Each dimsize provides the size for one dimension. dimsize must be a simple

expression depending only of the scalar arguments of the codelets.
args[arg_items].transfer= [atcall|atfirstcall|manual| auto] : indicates which transfer policy should be used for
transfer policy should be used for each argument. Though section O - Listing 16 - Array section in advancedload directive -
Transfer of 1 row (FORTRAN)

A Transfer policies on page 36 has more details, each valid value is briefly described below :

o atcall : indicates that HMPP should systematically upload/download the argument right
before and after the callsite ;
o atfirstcall : indicates that the argument is to be uploaded only once;

o manual : indicates that the argument will not be uploaded/downloaded unless an explicit
transfer (advancedload /delegatedstore) is requested

0 auto :indicates that HMPP should automatically and cleverly upload/download the argument
right before and after the callsite

A args[arg_items 5].io=[in|out|inout [none] : indicates that the specified function arguments
are either input, output, both (inout) or unused (none). By default, unqualified arguments of
codelets, region and resident are INOUT.

The specification of this parameter drives the data transfers between the host and the HWA.
Furthermore, it allows some additional checks about the use of the data in HMPP applications.

| n FORTRANIip "t lpear amet er can b e omitted when a
specified in the code source.

Table 3 describes the policy applied when both the FORTRAN INTENT and the HMPP parameters
are specified.

In C, a scalar argument is passed by value, so its HMPP input/output property cannot be OUT or INOUT.
Pointer argument with a const attribute has the same restriction (see Table 4).

Default [\ ouT INOUT

IN IN ouT INOUT
IN IN IN Error Warning
OouT ouT Error ouT Warning

INOUT INOUT Error Error INOUT

Table 3 - Intent in FORTRAN language versus HMPP Input/Output parameter policy

® See section 4.3 for the syntax of arg_items

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 21/86

ry

CAPS

HMPP Directives

By Value By Const address By address

IN

]

ouT Error Error ouT

INOUT Error Error INOUT
Table 4 - C language parameter versus HMPP Input/Output parameter policy

A cond="expr" : specifies an execution condition as a boolean C or Fortran logical expression that
needs to be true in order to start the execution of the codelet. The expression must be correct and
evaluable in all operational directive contexts (see Table 1 - HMPP Directives).
cond is useful to control the flow of directive execution. All directives are normally executed but since
they are invisible to the host compiler (they are treated as comments in FORTRAN for example) they
will still be executed by HMPP even if, for example, a goto statement in the host code implicitly skips
a HMPP directive. The host code is required to set up the expression fi e x porthat if it wants to skip
an HMPP directive fi e x pvaluates to FALSE.

A target=target_name][:target_name]* . specifies one or more targets for which the codelet

must be generated. It means that according to the target specified, if the corresponding hardware is

available AND the codelet implementation for this hardware is also available, this one will be
executed. Otherwise, the next target specified in the list wil be tried.

The values of the targets can be one of the following:

o0 CUDAfor NVIDIA platforms.
0 OPENCLfor NVIDIA and AMD ATI Stream Computing platforms.

For more information on the targets, please refer to section 6.

The examples below give example of codelet declaration:

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 22/86

-y

HMPP Directives
CAPS

1 #pragma hmpp simplel codelet, args[outv].io=inout, target=CUDA
2 static void matvec(int sn, int sm,

3 float inv[sm], float inm[sn][sm], float *outv){
4 inti,j;

5 for(i=0;i<sm;i++){

6 float temp = outv][i];

7 for(=0;j<sn;j++){

8 temp +=inv[j] * inm[i][j];

9 }

10 outv[i] =temp;

11 }

12

13 int main(int argc, char **argv) {
14 intn;

15 ...

16 #pragma hmpp simplel callsite, args[outv].size={n}
17 matvec(n, m, myinc, inm, myoutv);

18 ...

19 }

Listing 6 - Simple codelet declaration

1 #pragma hmpp <myGroup> simplel codelet, args[outv].io=inout, target=CUDA
2 static void matvec(int sn, int sm,
float inv[sm], float inm[sn][sm], float *outv){
inti, j;
for(i=0;i<sm;i++){
float temp = outv[i];
for(=0;j<sn;j++){
temp += inv[j] * inm[i][j];
}
10 outv[i] = temp;
11 }
12
13 int main(int argc, char **argv) {
14 intn;
15 ...
16 #pragma hmpp <myGroup> simplel callsite, a rgs[outv].size={n}
17 matvec(n, m, myinc, inm, myoutv);
18 ...
19 }

O©oO~NO Ol W

Listing 7 - Codelet declaration inside a group

More than one codelet directive can be added to a function in order to specify different uses or different
execution contexts. However, there can be only one codelet directive for a given call site label. An example
is given below:

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 23/86

~ HMPP Directives

CAPS
1 #pragma hmpp simplel codelet, args[outv].io=inout, &
2 #pragma hmpp & cond ="n==1024", target=CUDA
3 #pr agma hmpp simple2 codelet, args[outv].io=inout, &
4 #pragmahmpp & cond ="n==40", target=OPENCL
5 static void matvec(int sn, int sm,
6 float inv[sm], float inm[sn][sm], float *outv){
7 inti,j;
8 for(i=0 vi<sm;i+t) {

09 float temp = outv][i];

10 for(j=0;j<sn;j++){

11 temp += inv[j] * inm[i][jl;

12 }

13 outv[i] = temp;

14 }

15 }

16 int main(int argc, char **argv) {

17 intn;

18 ...

19 #pragma hmpp simplel callsite, args[outv].size={n}
20 #pragma hmpp simple2 callsite, args[outv].size={n}
21 matvec(n, m, myinc, inm, myoutv);

22 ...

23 #pragma hmpp simplel release

24 #pragma hmpp simple2 release

25

Listing 8 - Multiple codelet declarations (stand-alone codelet context)

Note that if more than one callsite directive precedes a function call, only one of them can initiate an RPC
call. The execution policy is based on the order of the callsite directives: the directives are evaluated one
after the other sequentially. Thus, a callsite can be launched if and only if the condition of all previous
callsite directives failed and the condition of the current directive is true and the HWA is available.
Subsequent directives will be ignored once one has been executed.

The target codelet can either be produced using one of the appropriate HMPP codelet generator or hand-
written using HWA vendor programming language (i.e. CUDA for NVIDIA targets or OPENCL).

The group directive allows the declaration of a group of codelets. The parameters defined in this directive are
applied to all codelets belonging to the group.

The syntax of the directive is:

#pragma hmpp <grp_label > group ,[target= target_name [:target_nam e]*]]? &
#pragma hmpp & [cond = 2expr2]?

Where the directive parameters are:

A <grp_label>: a unique identifier associated with all the directives that belong to the group
(definition and use). Thus, this label will have to be re-used to be able to run any codelet within a
group.

A cond = "expr" : specifies an execution condition as a boolean C or Fortran logical expression that

needs to be true in order to start the execution of the group of codelets. If a condition is specified at

this level for a group, this one wild|l overwrites al

comments above under codelet directive for alternate applications of this cond parameter.

A target=target_name[:target_name]* . specifies which targets to use and their order.
Means that according to the target specified, if the corresponding hardware is available AND that all
the codelet implementations for this hardware are also available, this one will be executed. Otherwise,
the next target specified in the list will be checked. For more information on targets, please refer to
chapter 6, HMPP Codelet Generators.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 24/86

t

/ 4 . .
HMPP Directives
CAPS

The callsite directive specifies the use of a codelet at a given point in the program. Related data transfers
and synchronization points that are inserted elsewhere in the application have to use the same label.

For the callsite directive:

A The codelet label is always mandatory
A The group label is required if the codelet belongs to a group.

The callsite directive must be inserted immediately before the function call.

The syntax of the directive is:

In stand-alone codelet context:

#pragma hmpp codelet_label callsite [, asynchronous]?

In group of codelets context:

#pragma hmpp <grp_labe | > codelet_label callsite [, asynchronous]?

Where the directive parameters are:

A <grp_label>: is a unique identifier associated with all the directives that belong to the group
(definition and use).
A codelet_label : is a unique identifier associated with all the directives that belong to the same

codelet execution (definition and use).
A asynchronous : specifies that the codelet execution is not blocking (default is synchronous). In
asynchronous mode, all the output parameters have to be downloaded using delegatedstore

directive.
A synchronize directive is mandatory before the first delegatedstore directive to insure that the
codelet execution is completed.

When an asynchronous codelet is declared, the release directive is also mandatory.

Usage examples of the callsite directive are given in Listing 8. If the condition of the directive is not
evaluated as true , or if no resources are available on the HWA, the native codelet code is used instead.

The synchronize directive specifies to wait until the completion of an asynchronous callsite execution.
For the synchronize directive:

A The codelet label is always mandatory
A The group label is required if the codelet belongs to a group.

The syntax of the directive is:

In stand-alone codelet context:

#pragma hmpp codelet_label synchronize

In group of codelets context:

#pragma hmpp <grp_label > codelet_label synchronize

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 25/86

-y

HMPP Directives
CAPS

Where the directive parameters are:

A <grp_label>: a unique identifier associated to all the directives that belong to the group
(definition and use).
A codelet_label : a unique identifier associated to all the directives that belong to the same codelet

execution (definition and use).

Note that the synchronize directive is only a synchronization barrier.

An HWA may need some time to be allocated or initialized before being used by a directive set. Thus, before
the RPC call or any data uploading, an anticipated allocation of the hardware would improve the execution
time of the RPC. This anticipated allocation can be done using the acquire directive.

When an acquire directive is used, it should be placed so that it is executed before all other instructions of

the directive set. If another directive is reached before that acquire directive, t hen t he HMPP’

implicitly acquire the default HWA (i.e. like if the device="device_number" clause was ignored).

The syntax of the directive is:

#pragma hmpp codelet_label acquire [device="device_number"], [exclusive]

In group of codelets context:

#pragma hmpp <grp_label> acquire [device="device_number"], [exclusive]

Where:

A device="device_number" : gives the number of the device on which all data should be allocated.
This is mainly useful when dispatching computations over multiple devices®.

A exclusive : specifies that the HWA should be locked to the given codelet or grouplet until it is
unlocked with the release directive. When locked, the HWA will not be available for use by other
codelets or grouplets as well as to other threads or processes.

The release directive specifies when to release the HWA for a group or a stand-alone codelet (this
directive is generally used in association with the Aacquire 0 directive (see the section 4.5.5 acquire
directive above). The release directive does not physically free the HWA but marks it for re-allocation.

If no release directive is specified, by default, HWA is released at program exit.
The syntax of the directive is the following:

In stand-alone codelet context:

#pragma hmpp codelet_label release [device ="device_number]

In group of codelets context:

® See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 26/86

S

r

-y

HMPP Directives
CAPS

#pragma hmpp <grp_label > release [device ="device_number"]

Where the directive parameters are:

A <grp_label>: a unique identifier associated to all the directives that belong to the group
(definition and use).
A codelet_label : a unique identifier associated to all the directives that belong to the same codelet

execution (definition and use).
A device= fidevice_number 0: gives the specific number of the device to release’.

Listing 9 shows a usage of the release directive. The allocated HWA of the testlabell call site is
released after the while loop.

while (X
for (k=0 ; k <iter ; k++) {
#pragma hmpp testlabell callsite
simplefuncl(n, &(t1[k*n]), &(t2[k*n]), &(t3[k*n]));
}

j =
}

#pragma hmpp testlabell release

P OO~NOULA WN PP

o

Listing 9 - release directive example (case of stand-alone codelet notation)

To allocatet he <codel et 'memog romg thentd\Af IBMPP evaluates the sizes of the non-scalar
parameters during the execution either from the codelet’ s s i gor direatlyrfrem an expression given by
the user in the call site (which is not recommended as it is deprecated) (see parameter size of the
HMPP callsite directive, chapter 4.5.2).

This directive can also be used to allocate data mirrors (see section 4.8.4, Data mirroring directives)

Note that once the size has been evaluated, it cannot be changed during any execution of the codelet up to
the next free directive.

The syntax of the directive is:

In stand-alone codelet context:

#pragma hmpp codelet_label allocate [, (args|data) [arg_items].size={ dimsize[,dimsize]* HI*
[,(args|data)] arg_items].elementsize ="expr'T*
[, (args|data)] arg_items]. device ="device_number"]*
[, (args|data)] arg_items]. hostdata ="var_addr"]*

In group of codelets context:

#pragma hmpp <grp_label> allocate [, (args|data) [arg_ite mg.size={ dimsize[,dimsize]* H*
[,(args|data)] arg_items] .elementsize ="expr'l*
[, (args|data)] arg_items]. device ="device_number"]*
[, (args|data) [arg_items]. hostdata ="var_addr"]*

" See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 27/86

~ HMPP Directives

CAPS
Where the directive parameters are:
A <grp_label>: a unique identifier associated to all the directives that belong to the group
(definition and use).
A codelet_label : a unique identifier associated to all the directives that belong to the same codelet
execution (definition and use).
A (args |data) [arg_items 8|.size= { dimsize[,dimsize]* }: gives an alternate way to

evaluate the size of non-scalar codelet arguments or data mirrors. Each dimsize provides the size
for one didimsze $i a mexpradsion evaluable at the location of the directive (can be a
variable, a value, an expression to evaluate, etc.).

A (args|data)[arg_items °1 . el e me nt exprzoe specifies the element size of the allocated
memory (for data mirrors mainly).

A (args|data)[arg_ items].device="device_number" . gives the number of the device on
which the data should be allocated. This is mainly useful when dispatching computations over multiple
devices™.

A args[arg_items].hostdata="expr" expr is an expression that gives the host address of the

data to upload.

This directive is used when the callsite specifies a size that is not known in the advancedload directive
used. The size must be specified for each dimension of the argument. Listing 10 illustrates the size

declaration for two n-by-m mat rinmc e sa odtr " .

Pl ease, not esizechapaomemetar”“ i s speci faloeade f directivg this\alueg u me n t
cannot be changed in an advancedload or delegatedstore directives.

#pragma hmpp ma tvec allocate, args[inm;outv].size={n,m}

while (...){
#pragma hmpp matvec callsite, asynchronous
matvec(n, m, (inc+(k*n)), inm, (outv+(k*m)));

#pragma hmpp matvec synchronize
#pragma hmpp matvec delegatedst ore, args[outv]
}* endwhile */
0 #pragma hmpp matvec release
Listing 10 - allocate directive example (case of stand-alone codelet notation)

P OOO~NOULA WN P

Data mirrors can be dynamically created with the Listing 9 - release directive example (case of stand-
alone codelet notation)

allocate directive, so it is also logical to allow to destroy them dynamically. This directive allows that.

® See section 4.3 for the syntax or arg_items
% See section 4.3 for the syntax or arg_items

19 See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 28/86

~ HMPP Directives

CAPS

#pragma hmpp (<grp_label>| codelet_label |) free [, (args|data))] arg_items]
Where the directive parameters are:

A <grp_label>: a unique identifier associated to all the directives that belong to the group
(definition and use).

A codelet_label . a unique identifier associated to all the directives that belong to the same codelet
execution (definition and use).

A (args|data)[arg_items 1. gives the name of the codelet argument or the base address of the

mirror to de-allocate from the HWA.

When using a HWA, an important bottleneck is often the data transfer between the HWA memory and the
host memory. To limit the communication overhead, the programmer can try to overlap data transfers with
successive executions of the same codelets by using the asynchronous property of the HWA. Two directives
can be used for that purpose:

1. The advancedload directive loads data before the remote execution of the codelet.
2. The delegatedstore directive delays the fetching of the result.

These directives are detailed in the next sections.

Data can be uploaded before the execution of the codelet by using the advancedload directive. The syntax
is:

In stand-alone codelet context:

#pragma hmpp codelet_label advancedload
,args[arg_items |
[,args[arg_items].size={ dimsize[,dimsize]* H*
[,args[arg_items].addr=" expr"]*
[,args[arg_items].hostdata=" expr"]*
[,args[arg_items].section={ [subscript_triplet e
[,asynchronous]

In group of codelets context:

#pragma hmpp <grp_label > [codelet_label]? advancedload
,args[arg_items |
[,args[arg_items |.size={ dimsize[,dimsize]* H*
[,args[arg_items J.addr=" expr"]*
[,args[arg_items].hosdata=" expr"]*
[,args[arg_items].section={ [subscript_triplet Y
[,asynchronous]

Where the directive parameters are:

A <grp_label>: a unique identifier associated with all the directives that belong to the group
(definition and use).

1 See section 4.3 for the syntax or arg_items

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 29/86

-y

HMPP Directives
CAPS

>

>

codelet_label : a unique identifier associated with all the directives that belong to the same codelet
execution (definition and use).

argsf[arg_items] : the name or rank (caller program) of the argument to be loaded.
args[arg_items].size={dimsize[,dimsize]*} : gives an alternate way to evaluate the size of
non scalar codelet arguments. Each dimsize provides the size for one dimension. This parameter
may be used when the callsite specifies a size that is not known in the advancedload directive
used.

Note: This parameter is deprecated since the size should preferably be specified though an
allocate directive.

A args[arg_items].addr="expr" : expr is an expression that gives the host address of the data to
upload.
Note: This parameter is deprecated since it lead to some users to believe that it allowed to manipulate
the base address on the HWA’'s side. Us e rthastdatah oul d s
parameter.

A args[arg_items].hos tdata="expr" : expr is an expression that gives the host address of the
data to upload.

A args[arg_items].section={[subscript_triplet,]+]* . indicates that only an array section
will be transferred to the device. See section 4.6.4 - Array section in HMPP on page 34 for further
details.

A asynchronous 2: indicates that the transfer can be performed asynchronously, meaning that it is a
non-blocking transfer.

The advancedload direct i ve i s wused onintehat"a swhdiwes dnee ™ An err ol

message is generated otherwise.

1 #pragma hmpp matvec codelet, args[n;m ; inc].transfer=atcall , args[inm;outv].transfer=manual
2 void matvec(int n, int m, float *inc, float *in m, float *outv);
3
4 #pragma hmpp matvec advancedload, args[inm], args[inm].size={n,m}
5
6 while (...){
7 #pragma hmpp matvec callsite, args[inm].size={n+1,m+1}, &
8 #pragma hmpp & asynchronous
9 matvec(n, m, (inc+(k* n)), inm, (outv+(k*m)));
10
11 #pragma hmpp matvec synchronize
12 #pragma hmpp matvec delegatedstore, args[outv]
13 if (...) {
14 for (i=0; i<m; i++) {
15 inm[...] =0.1;
16 } /* endfor */
17 #pragma hmpp matvec adv ancedload, args[inm]
18 } I* endif */
19 } I* endwhile */
Listing 11 - advancedload directive example (case of stand-alone codelet notation)
An example of the advancedload directive is given in Listing 11. The advancedload directive at line 17

loads the inm matrix after it has been modified and before the next call to the codelet

2 Target dependent. For more details, see section 4.6.3-Asynchronous transfers on page 35.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 30/86

-y

HMPP Directives
CAPS

Warning:

The expression used to specify the size and address of the arguments can be evaluated only when the
advancedl oad is used. However, most inconsistencies are likely to be detected at compile time. Listing 12
shows an illegal use of the advancedload directive where an error message will be issued by the compiler.

void foo_xxx(int* N, f loat* CA, float* CX, float* CY) {
/* lllegal preloading of the "table" input data because
OAAT A EO AAAI AOAA AAIT T x s20AA1l Ae AARAOGECT AOGAA EAOA
#pragma hmpp callfoo advancedload, args[0], &
#pragma hmpp & asynchronous

/* Call the codelet */

©CoO~NOUEWN R

{
10 float table[2];
11 table[0] = 3.14159265357;
12 table[1] = 2.718281;

13 #pragma hmpp callfoo callsite , asynchronous
15 foo_hmpp(table , CX, CY, SY_o ut);

16 }

17

18 #pragma hmpp callfoo synchronize
19 /* Starting from there, the codelet execution has complete */

20 ..

21 #pragma hmpp callfoo delegatedstore, args[SY_out]

22 [* Starting from there, the value of SY_out has been updated */
23

24 #pragma hmpp callfoo release
25 /* Starting from there, the hardware can be reallocated
26 to another codelet */ @
27 }
Listing 12 - lllegal use of the advancedload directive - (the actual arguments of the codelet is not in the scope of the
advancedload directive).

When the execution reaches an advancedload program point, the HWA, if available, is locked by the
HMPP runtime. When an asynchronous advancedload directive is used, the argument must not be
modified between that directive and the call of the codelet.

The delegatedstore directive is the opposite of the advancedload directive in the sense that it
downloads output data from the HWA to the host. The program execution is pause until all transfers are
completed. The syntax is:

In stand-alone codelet context:

#pragma hmpp codelet_label delegatedstore
,args[arg_items |
[,args[arg_items J.addr=" expr"]*
[,args[arg_items].hostdata=" expr"]*
[,args[arg_items].section={ [subscript_triplet T
[,asynchronous]

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 31/86

Ao

-y

CAPS

In group of codelets context:

HMPP Directives

#pragma hmpp <grp_label > [codelet_label]? delegatedstore
,args[arg_items |
[,args[arg_items].addr=" expr"]*
[,args[arg_items].hostdata=" expr"]*
[,args[arg_items].section={ [subscript_triplet Bk
[, asynchronous]

Where the directive parameters are:

A <grp_label>: a unique identifier associated with all the directives that belong to the group
(definition and use).
A codelet_label . the unique identifier associated with all the directives that belong to the same

codelet execution (definition and use);
A args[arg_items 3] : the name (caller program) or rank of the codelet arguments to download.

A args[arg_items].addr="expr" ;. expr is an expression that gives the host address of the data to
store.
Note: This parameter is deprecated since it lead to some users to believe that it allowed to manipulate
the base address on the HWA's side. Us e thastdadah oul d s
parameter of directives that support it.
A args[arg_items].hostdata="expr" : expr is an expression that gives the host address of the
data to upload.
A args[arg_items].section={[subscript_triplet,]+]* . indicates that only an array section
will be transferred from the device. See section 4.6.4 - Array section in HMPP on page 34 for further
details.

A asynchronous !: indicates that the transfer can be performed asynchronously, meaning that it is a
non-blocking transfer.

An example of the delegatedstore directive is given in Listing 13. In this example, the simple function is
called twice. Only the first call is a candidate for remote execution, so only that call is offloaded to an
accelerator or a worker thread. The value of myoutvl is downloaded after the second call.

Note that for an asynchronous callsite a delegatedstore directive must be preceded by a
synchronize directive.

The delegatedstore directive is usedintamn "datta fnous § $ eputt" e A'n
message is generated otherwise.

#pragma hmpp simple callsite, asynchronous
simple(n, m, myincl,inm, myoutvl);
simple(n, m, myinc2,inm, myoutv2);
#pragma hmpp simple synchronize
#pragma hmpp simple delegatedstore, args[outv]
#pragma hmpp simple release

Listing 13 - delegatedstore directive example

'3 See section 4.3 for the syntax or arg_items

 Target dependent. For more details, see section 4.6.3-Asynchronous transfers on page 35.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 32/86

err ol

-y

HMPP Directives
CAPS

Warnings:
You have to ensure that the argument expression stays valid in the context of the delegatedstore use.

This directive is mandatory in the context of asynchronous callsite

Like asynchronous callsites , asynchronous transfers are useful to overlap operations on the HWA with
operations on the host.

In OpenCL, no specific allocation functions are required to ensure asynchronous operations. Asynchronous
behavior depends on how the OpenCL library has been implemented by the vendor.

Asynchronous Loads
To enable asynchronous loads, the asynchronous clause of the advancedload directive must be used.

The semantic of the operation is defined as follows:

A The load operation starts when the directive is reached. As a consequence, transferred arguments
must not be modified during the whole operation.

A The HMPP runtime automatically waits for pending transfers when a callsite directive is reached.

A The new waitload directive can™ be used to wait for one or more load operations to complete:

#pragma hmpp waitload [,args[arg_items]] *
The asynchronous clause does not guarantee real non-blocking and overlapping transfers. The current
implementation is subject to the target limitations.

Asynchronous Stores
To enable asynchronous stores, the asynchronous clause of the delegatedstore directive must be used.
The semantic of the operation is defined as follows:

A The store operation starts when the directive is reached. As a consequence, transferred arguments
must not be modified or read during the whole operation.

A The HMPP runtime automatically waits for pending transfers when a release directive is reached.

A The waitst ore directive should™ be used to wait for one or more store operations to complete:

#pragma hmpp waitstore [,args| arg_items || *

The asynchronous clause does not guarantee real non-blocking and overlapping transfers. The current
implementation is subject to the target limitations and constraints.

® |n the absence of waitioad directive, the next callsite affected by this load will implicitly wait for it to
complete if needed.

'® In the absence of waitstore , your code may yield non reproducible results since the content of the
downloaded variable may or may not have arrived on the host when you read it.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 33/86

-y

HMPP Directives
CAPS

An array section is a selected portion of an array. It designates a set of elements from an array.

The array sections can be used in order to optimize data transfers between the host and the HWA in some
cases where it is not necessary to transfer the whole array.

This parameter can be used with both the advancedload and the delegatedstore directives (see
respectively chapter 4.6.1 and 4.6.2).

The syntax of this parameter is of the form:

args|[arg_item].section={ [subscript_triplet T
Where

A arg_item designates an array;

A subscript_triplet consists of two subscripts and a stride and defines a sequence of numbers
corresponding to array element positions along a single dimension.
The notation for t $steeterslstiddecr i”ptwhterriep:l et i s: *°

start, end . are subscripts which designate the first and last values of a dimension.

stride : is a scalar integer expression that specifies how many subscript positions to count
to reach the next selected element. If the stride is omitted, it has a value of 1. The stride
must be positive.

The subscript_triplet must be specified for each dimension of the array.

Warnings:
Array sections must be used carefully in HMPP applications. Indeed, the use of a stride greater than 1 may
results to a slowdown of the application when lots of data are transferred. In such cases, the transfer of the
whole array still remains the best solution.
To get performance, users should not forget the constraints inherent in data layout:

- They should favor the transfer of contiguous data;

- They should favor data locality in array section (means for example to transfer data by column for
FORTRAN and by row for C language instead of the opposite).

Case of not normalized arrays

By default HMPP makes the assumption that the arrays are normalized, meaning that all the dimensions of
the arrays:

A Start from 0, in C language;
A Start from 1, in FORTRAN language;

I n cases where at |l east one of an array’s dimensions |
the following notation:

args[arg_item].section={ [subscript_triplet ,1+1* of { [shape_couple ,]+}

Where shape_couple : designates the first and the last values in the sequence of indices for a dimension.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 34/86

-y

HMPP Directives
CAPS

Listing 14 illustrates the approach. In the delegatedStore directive, the array section requests the transfer
of the contiguous data Au|[O: 10 20f]a one dimension array fi u 0declared with the
A(-1024: 10 &raysbape.

A

INTEGER, PARAMETER :: M=4
INTEGER, PARAMETER :: Ns=1024
INTEGER, PARAMETER :: Ne=+1024
REAL :: u(Ns:Ne), v(Ns:Ne)

A

- Transfer of the whole array
ISHMPP <conv> advancedload, args[f1::A]

- callsite

ISHMPP <conv> f1 callsite

call doubleconvld(Ne - Ns,M,u,v,coef)
A

I - callsite

ISHMPP <conv> f2 callsite

call convld(Ne -Ns,M,u,coef)

A

- get only the modified data on the host
I$SHMPP <conv> delegatedstore, args[fl::A],args[f1::A].section={ 0:Ne} of { Ns:Ne }

ISHMPP <conv> f1 codelet
SUBROUTINE doubleconvi1d(n,iter,A,B,C)

Listing 14 - Array section specified with a shape (extract) (FORTRAN)

Use of array sections in HMPP, examples

Below are a few examples provided to illustrate the use of the i . s e ¢ t iparam&ter.

INTEGER, PARAMETER :: size = 3661
INTEGER*4, dimension(size,size) :: tab
A
1$hmpp <Mygroup> get_col advancedload, args[tab], args[tab].sec tion={1:size,1:1}
A
I$Shmpp <group> get_col callsite
call put(size, tab)
A
I$hmpp <Mygroup> get_col codelet, args[tab].transfer=atcall
SUBROUTINE put(size, tab)
A
END SUBROUTINE put

Listing 15 - Array section in advancedload directive - Transfer of 1 column (FORTRAN)

On Listing 15, through the use of an advancedload directive, the user transfers the first column, and on
Listing 16 the first row of the array fi t a bde advancedl oad parameter is set to true at the callsite
level to notify that the transfer of the data has already been done.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 35/86

~ HMPP Directives

CAPS

INTEGER, PARAMETER :: size = 3661
INTEGER*4, dimension(size,size) :: tab
A

1I$Shmpp <Mygroup> get_col advancedload, args[tab], args[tab].sect ion={1:1,1:size}
A
IShmpp <group> get_col callsite
call put(size, tab)
A
I$hmpp <Mygroup> get_col codelet, args[tab].transfer=atcall
SUBROUTINE put(size, tab)
A
END SUBROUTINE put

Listing 16 - Array section in advancedload directive - Transfer of 1 row (FORTRAN)

By default, all data transfers are being done implicitly by HMPP. This has the great advantage that a code
can be offloaded to a GPU with the blink of an eye since all you need is to put two directives on your code,
namely the codelet/callsite directives.

However, once you want to finely control transfers, be it to remove redundant transfers, or to leave some
GPU data untouched, you need to add directives options to explicitly disable implicit transfers and add
explicit transfers where needed.

This policy, thereafter referred as the legacy policy, not only makes it harder than necessary to change the
default behavior, but also leads to code that may be hard to review, as implicit and explicit operations are
mixed.

With HMPP3, several policies are available to simplify the transition from a basic, and less efficient, usage of
HMPP directives, to a more efficient, advanced usage.

This transfer policy is the easiest to understand, and the easiest to use. All transfers are implicitly performed
at the callsite.

At the callsite are performed the following operations:

A Update of the pointer to the host data according to the argument passed to the callsite.

A Transfer of the data zone from the host to the accelerator if the parameter has IN or INOUT intent.

A Execution of the codelet on the accelerator

A Transfer of the data zone from the accelerator to the host if the parameter has OUT or INOUT intent.

In the example below, the atcall transfer policy is used instead of the usual, fil e g a cthansfer policy.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 36/86

-y

HMPP Directives
CAPS

#pragma hmpp foo codelet, target=CUDA, args[a].io=inout , args[*].transfer=atcall
void foo(int a[10], const int b[10]) {
for (inti=0; i< 10; ++i)
a[i] *= bfi];
}

int A[10], B[10];

int main(void) {
#pragma hmpp foo allocate

for (intj=0; j < 2; +4)) {
#pragma hmpp foo callsite
foo(A, B);

}

#pragma hmpp foo release
return O;

Listing 17 - atcall transfer policy example
The following transfers will be performed at the execution:
A callsite: AC a, BC b, A¢ a
A callsite: AC a, BCh, AC a
Note that this pattern of transfers corresponds to the pattern which would be obtained withthe il egacy o
policy.

The use of the wildcard notation i * @neans that all the parameters are concerned by this property. In some
situations, only some parameters can be specified.

This policy forbids the following directive options to be used:

A .addr
A .advancedload

Note that these directives are forbidden on arguments that use the atcall transfer policy since that policy
tells HMPP to always transfer all arguments. Therefore

What's mor e, tdhdt'sbe psedlwithcagy advanoedlbad or delegatedstore directives.

If they are used anyway, the pattern of transfer when the callsite is reached will remain the same, and
additional advancedload or delegatedstore directives will just generate extraneous transfers.

This transfer policy allows transfers savingsby | eavi ng constant codel et ar gume
This policy should be used instead of the .const directive attribute, that has been deprecated since HMPP-
3.0.

" Whether the HMPP compiler will accept advancedload or delegatedstore directives on parameters that
use the atcall policy is subject to changes.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 37/86

-y

HMPP Directives
CAPS

#pragma hmpp foo codelet, target=CUDA, args[a].io=inout, args[b].transfer=atfirstcall, &
#pragma hmpp & args[a].transfer=atcall
void foo(int a[10], const int b[10]) {
for (inti=0; i< 10; ++i)
a[i] *= bfi];
}

int A[10], B[10];

int main(void) {
#pragma hmpp foo allocate

for (intj=0;j<2; ++){
#pragma hmpp foo callsite
foo(A, B);

}

#pragma hmpp foo release
return O;

}

Listing 18 - atfirstcall transfer policy example

This transfer policy is meant to be used for advanced users, to finely control transfers. No transfer is
automatically performed at the callsite.

At the callsite are performed the following operations:

Update of the pointer to the host data according to the argument passed to the callsite.
No transfer from the host to the accelerator.
Execution of the codelet on the accelerator.
No transfer from the accelerator to the host.

> > > >

Transfers will only be performed if advancedload or delegatedstore directives are used before or after
the callsite

If an advancedload is reached before the host pointer is known, this will trigger a runtime error.
To let the host pointer be known, the directive option .hostdata must be used.

In the example below, the manual transfer policy is used to optimize transfers.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 38/86

-y

HMPP Directives
CAPS

#pragma hmpp foo codelet, target=CUDA, args[a].io=inout, args[*].transfer=manual
void foo(int a[10], const int b[10]) {
for (inti=0; i< 10; ++i)
a[i] *= bfi];
}

int A[10], B[10];

int main(void) {
#pragma hmpp foo allocate, args[a].hostdata="A", args[b].hostdata="B"

#pragma hmpp foo advancedload, args[a, b]
for (intj=0;j<2; ++){
#pragma hmpp foo callsite

foo(A, B);
}

#pragma hmpp foo delegatedstore, args[al

#pragma hmpp foo release
return O;

Listing 19 - manual transfer policy example

The following transfers will be performed at the execution:

f advancedload:A Ca,B Cb
callsite:

callsite:

delegatedstore: A ¢ a
release

= =4 =4 =4

Transfer clause (codelet and region directives)

The automatic management of data transfers policy is intended to improve the basic performance of HMPP
applications.

Quite often, data used in the codelet may not need to be synchronized between the host and the GPU,
typically:

A If the host doesn’t use the output of the codel
A If some of the arguments are never modified (constant arrays, array bounds, o)

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 39/86

et

(

-y

HMPP Directives
CAPS
For example:
#pragma hmpp codl codelet, target=CUDA, args|c].io=inout, &
#pragma hmpp & args[*].transfer=auto
void k(int n,

float alpha, float beta,
const float a[n*n], const float b[n*n],

float c[n*n]) {
A
}
Listing 20 - automatic transfer clause in codelet definition
Wh e nautd"” transfer mode i s activated, read and write

instrumented around the callsite to trigger an automatic transfer'®. This is done only when a modified version
of an argument is needed on the host or on the GPU.

It is still possible to use advancedLoad and delegatedStore pragmas to force transfers.
Currently a parameter is automatically updated in any of the following cases:

A A parameter is written on the host.
A A function call is performed near the callsite, inside the loop.
A At the beginning or the end of the current function containing the codelet.

Automatic transfer cannot be used with asynchronous codelet execution.

| mplications of automatic transfers on cod

Since automatic transfers work by instrumenting the program statements around the callsite, codelet
argument’ s size are also inferred from the «coddetsite’
arguments’s size is inferred from the codelet’s signat

In practice, that means that in the following FORTRAN program, it is required to specify the size of the
codelet argument named fi t &ince the array passed at the callsite, it a bi® a FORTRAN allocatable
array, which size is not specified at the declaration of this array.

® See section 2748416.0.1073774592 | mplications of automatic trfaansfers
noteworthy implications of using automatic transfers on your HMPP program.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 40/86

-y

HMPP Directives
CAPS

1$ hmpp <g> group, target=cuda

program tr
integer, dimension(:), allocatable :: array
integer :: size
allocate(array(size))

I$hmpp <g> allocate , args[s::t].size={size}

1$ hmpp <g> s callsite
call sub(size, array)

contains

1$ hmpp <g> s codelet, args[*].transfer=auto
subroutine sub(n, t)

implicit none

integer :: n

integer, dimensi on(n) :: t

11
end subroutine sub

end program tr

If the allocate .size option was omitted, the following error would be issued:

hmpp: [Error HP0946] tr.f90:8: Cannot deduce 'addr' for the parameter 'n' at rank #0 in codelet
's' of directive set 'g'

hmpp: [Error HP0944] tr.f90:8: Cannot deduce 'size' for the parameter 't' at rank #1 in codelet
's' of directive set 'g'

Likewise, in following program in C language, it is required to specify the size of the codelet argument named
fi t &ince the array passed at the callsite, i p t, & a C pointer, which pointed memory region size is not
specified at the declaration of this pointer.

#include <stdlib.h>
#pragma hmpp <g> group, target=CUDA
#pragma hmpp <g> s codelet, args[*].transfer=auto
void sub(int n, int t[n]) {
[**/
}

int main (void) {
const int size = 10;
int *pt = NULL;
pt = calloc(size, sizeof(int));

#pragma hmpp <g> allocate , args[s::t].size={size}

#pragma hmpp <g> s callsite
sub(size, pt);
return O;

}

If the allocate .size option was omitted, the following error would be issued:

hmpp: [Error HP0946] tr.c:13: Cannot deduce 'addr' for the parameter 'n' at rank #0 in codelet

's' of directive set 'g'

hmpp: [Error HP0944] tr.c:13 : Cannot deduce 'size' for the parameter 't' at rank #1 in codelet
's' of directive set 'g’

If a callsite is surrounded by functions that the user knows they have no side effects on the codelet
parameters (printer or timing functionsfor i nst ance), automatic transfers ar e
parameters by functions is not detected by HMPP.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 41/86

-y

HMPP Directives
CAPS

This limitation can be removed with the disregard directive associated to the function calls. The syntax is:

#pragma hmpp [< group_labe | >]? [codelet_label | disregard args[arg_items]

For block of statements (case of FORTRAN for example), the following directives are also available:

To mark the beginning of the block to ignore:

#pragma hmpp [< group_label >]? [codelet_label] begindisregard args| arg_items]

To mark the end of the block to ignore:

#pragma hmpp [< group_label >]? [codelet_label] enddisregard args[arg_items |

In FORTRAN language, the equivalent of the disregard directive for a block of statements is:

I$hmpp [< group_label >]?[codelet_label] begindisregard

FORTRAN STATEMENT

I$hmpp [< group_label >]? [codelet_label] enddisregard

This directive allows to inhibit data transfer from or to the GPU.

So for example, if we consider the following codelet definition where only matrix ¢ has an inout status

ISHMPP <myGRP> sgemm codelet, target=CUDA, args|c].io=inout
SUBROUTINE sgemm(n,alpha,a,b,beta,c)

IMPLICIT NONE

INTEGER, INTENT(IN) :n

REAL, INTENT(IN) :: alpha,beta

REAL, INTENT(IN) : : b(n,n),a(n,n)
REAL, INTENT(INOUT) :: c(n,n)
A

Listing 21 - disregard directive example - codelet definition (extract)

And if we consider the following code (we assume here that there are no other HMPP directives in the
application):

ISHMPP <MyGrp> allocate, args[sgemm::a;sgemm::b;sgemm::c].size={N,N}

DO i=1,2

ISHMPP <MyGrp> sgemm calllsite

call sgemm(N,alpha,a,b,beta,c_hmpp)
END DO

ISHMPP <MyGrp> release

Listing 22 - disregard directive example - callsite level

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 42/86

-y

HMPP Directives
CAPS

This leads to the following output™®:

...group "myGRP", codelet "sgemm": Allocating input: arg[n].size=0(scalar) arg[n].const=0

...group "myGRP", codelet "sgemm": Allocating input: arg[alpha].size=0(scalar) arg[alpha] .const=0
...group "myGRP", codelet "sgemm": Allocating input: arg[a].size=[128][128] arg[a].const=0

...group "myGRP", codelet "sgemm": Allocating input: arg[b].size=[128][128] arg[b].const=0

...group "myGRP", codelet "sgemm": Allocating input: arg[beta].si ze=0(scalar) arg[beta].const=0
...group "myGRP", codelet "sgemm": Allocating inout: arg[c].size=[128][128] arg[c].const=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg[n].size=0(scalar) arg[n].async=0

...group "myGRP", codelet "sgemm"; Writin g data to HWA: arg[alpha].size=0(scalar)
arg[alpha].async=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg[a].size=[128][128] arg[a].async=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg[b].size=[128][128] arg[b].async=0

..group "myGRP", codelet "sgemm": Writing data to HWA: arg[beta].size=0(scalar)

arg[beta].async=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg[c].size=[128][128] arg[c].async=0

...group "myGRP", codelet "sgemm": Starting codelet: async=0

..group"” myGRP", codelet "sgemm": Reading data from HWA: arg|c].size=[128][128] arg[c].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[n].size=0(scalar) arg[n].async=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg[alpha].size=0(sca lar)
arg[alpha].async=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg[a].size=[128][128] arg[a].async=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg[b].size=[128][128] arg[b].async=0

...group "myGRP", codelet "sgemm": Writing d ata to HWA: arg[beta].size=0(scalar)
arg[beta].async=0

...group "myGRP", codelet "sgemm": Writing data to HWA: arg|c].size=[128][128] arg[c].async=0

...group "myGRP", codelet "sgemm": Starting codelet: async=0

...group "myGRP", codelet "sgemm": Reading dat a from HWA.: arg[c].size=[128][128] arg[c].async=0

Figure 6 - HMPP output execution with all the transfers

On Figure 6%, it should be noticed that at each iteration of the loop:

A All the input arguments are transferred from the CPU to the GPU (data in green);
A All the output arguments are transferred from the GPU to the CPU (data in blue).

If we modify now Listing 21, by ad éuton"g ttrhaen s'f er c Indistsigg23.as s hown o

ISHMPP <MyGrp> sgemm codelet, target=CUDA, args|c].io=inout, args[*].transfer=auto
SUBROUTINE sgemm(n,alpha,a,b,beta,c)

IMPLIcIT NONE

INTEGER, INTENT(IN) :n

REAL, INTENT(IN) :: alpha,beta

REAL, INTENT(IN) :: b(n,n),a(n,n)

REAL, INTENT(INOUT) :: c(n,n)

A

Listing 23 - Codelet definition with automatic data transfer validated

The addition of this clause leads now to the following HMPP execution:

% Got by setting HMPP_VERBOSITY=9

% Some details of the HMPP messages have been removed in order to improve the readability of the
example.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 43/86

-y

HMPP Directives
CAPS

...group "mygrp": Allocated 'NVIDIA GPU (CUDA Runtime 3.1)'.
...group "mygrp", codelet "sgemm": Allocating input: arg[n].size=0(scalar) arg[n].const=0
...group "mygrp", codelet "sgemm": Allocating input: arg[alpha].size=0(scalar) arg[alpha].const=0
...grou p "mygrp", codelet "sgemm": Allocating input: arg[a].size=[128][128] arg[a].const=0
...group "mygrp", codelet "sgemm": Allocating input: arg[b].size=[128][128] arg[b].const=0
...group "mygrp", codelet "sgemm": Allocating input: arg[beta].size=0(scalar) arg [beta].const=0
...group "mygrp", codelet "sgemm": Allocating inout: arg[c].size=[128][128] arg[c].const=0
...group "mygrp", codelet "sgemm": Writing data to HWA: arg[n].size=0(scalar) arg[n].async=0
...group "mygrp", codelet "sgemm": Writing data to HWA: a rg[alpha].size=0(scalar)
arg[alpha].async=0
...group "mygrp", codelet "sgemm": Writing data to HWA: arg[a].size=[128][128] arg[a].async=0
...group "mygrp", codelet "sgemm": Writing data to HWA: arg[b].size=[128][128] arg[b].async=0
...group "mygrp", codele t "sgemm": Writing data to HWA: arg[beta].size=0(scalar)
arg[beta].async=0
...group "mygrp", codelet "sgemm": Writing data to HWA: arg|[c].size=[128][128] arg[c].async=0
...group "mygrp", codelet "sgemm": Starting codelet: async=0
...group "mygrp", codelet "sgemm": Starting codelet: async=0
...group "mygrp", codelet "sgemm": All inputs may not be transfered to HW.
...group "mygrp", codelet "sgemm": Reading data from HWA: arg[c].size=[128][128] arg[c].async=0
Figure 7 - HMPP output executioni ef f ect of the automatic clause on codel et ¢

Figure 7 shows that all the useless intermediate data transfers have been removed between the two
executions of the codelet.

Now if we considerthefol | owi ng piece of code, with thegeitimg n.oduct i c

DO i=1,2
start_time = getTime()

ISHMPP <MyGrp> sgemm callsite
calLL sgemm(N,alpha,a,b,beta,c_hmpp)

stop_time = getTime()

END DO

Listing 24 - disregard directive example - callsite level, introduction of two function calls

These functions may have some effects on the arguments. Without any additional information, HMPP will do
this assumption. So, in this context, the execution will be identical to those illustrated Figure 6.

I f you want to specify that these functions have no
example:

A Add adisregard directive before each function call in order to indicate to HMPP that these function
calls must not be took into account in the data flow computation. Listing 25 illustrates a such approach

DO i=1,2
ISHMPP <MyGrp> sgemm disregard, args[*]
start_time = getTime()

ISHMPP <MyGrp> sgemm calllsite
calLL sgemm(N,alpha,a,b,beta,c_hmpp)

ISHMPP <MyGrp> sgemm disregard, args[*]
stop_time = getTime()

END DO

Listing 25 - disregard directive applied on statements

Or you can also add begindisregard and enddisregard directives as Listing 26. These directives
indicate to HMPP that all the statements include between the begin and the end directives must be ignored
by the analysis.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 44/86

-y

HMPP Directives
CAPS

ISHMPP <MyGp> sgemm begindisregard, args[*]

DO i=1,2
start_time = getTime()

ISHMPP <MyGrp> sgemm callsite
caLL sgemm(N,alpha,a,b,beta,c_hmpp)

stop_time = getTime()
END DO

ISHMPP <MyGrp> sgemm enddisregard
Listing 26 - disregard directive applied on a block of statements

In both cases (Listing 25 and Listing 26), the execution of their code leads to the transfers shown on Figure
7.

In a group, arguments from different codelets may share resources on the device: for instance if they refer to
the same table or if one uses the result of another one. In these cases, HMPP can take advantage of using
the same memory space on the device for all these arguments.

The map directive provides this feature: it maps several arguments on the device.

The notation is the following:

#pragma hmpp <grp_label > map, args[arg_items |

The Listing 27 au-dessous illustrates the use ofthemapdi r ect i ve (in same color the

A Line 2: is the definition of a group of codelets;

A Line 3: illustrates the mapping of respectively two variables na me dv1”* defined in two
codel et sinithn & ma dotSuni” .

A Line 4: il lustrates the mappinglxpf amdp@etfiwneldy i nw

di fferent c oite ! e & dotbun®’ me s “

From HMPP point of view, the introductono f t he m& t dvior écti ves means that:

A The t wo walroiillddsean ss thHe same on the device;
A The two vpri awlde swi*l | be seen as the same;
Warning:

The 10 status may be still different for each directive because they each refer to different particular
callsite : this will determine the transfer requirements. However the union set of IO directives will define
the way the map memory will be allocated!

Example: in a map: a, b

-1 f Aianod doceletd-1

-1 f Aobudt ibicedelad F2

- Then the memory allocation will be inout (only one for both).

-hao wil |l be | oaded before F1

-A bo will be downl oaded after F2

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 45/86

CAPS HMPP Directives
1 A
2 #pragma hmpp <myGroup> group, target=CUDA // definition of the group
3 #pragma hmpp <myGroup> map, args[init:;vl; dotSum::vl]
4 #pragma hmpp <myGroup> map, args[init::Ixp;dotSum::v2]
5
6 #pragma hmpp <myGroup> init codelet, args[v1].io=out
7 void init(int n, float vi[n], float initval , float Ixp[n]){
8 int j;
9 for=0;j<n;j++)
10 v1[j] = initval + | xplil;
11 A
12 }
13
14 #pragma hmpp <myGroup> dotSum codelet, args[v1].io=inout
15 void dotSum(int n, float v1[n], float v2[n])
16 {
17 int j;
18 for(j=0;j<n;j++)
19 v1[j] += v2[j];
20 }

Listing 27 - map directive example
To be able to be mapped, the variables must:

A have the same dimensions;
A have the same type.

The example given below shows an illegal map association between two array variables and a scalar. In
such situations HMPP will generate an error message.

1 A

2 #pragma hmpp <myGroup> group, target=CUDA

3 #pragma hmpp <myGroup> map, args[dotSum::v1;init::n]
4

5 #pragma hmpp <myGroup> init codelet, args[vl].io=out

6 void init(intn , floatvi[n]) {

7 int j;

8 float val = 0.0;

9 forG=0;j<n ;)

10 v1[j] = val++;

11 }

12

13 #pragma hmpp <myGroup> dotSum codelet, args[v1].io=inout
14 void dotSum(int n, float v1[n], float v2[n])

15 {

16 int j;

17 A @

Listing 28 - lllegal map directive usage

This directive i smaguidier escitmiivieare xacse ptth et h“at the ar gume:
specified by their name. So, the notation is the following:

#pragma hmpp <grp_label > mapbyname[, variableName]+

To be able to be mapped, the same constraints as for the map directive are applied, the variables must
have:

A the same dimensions;
A the same type.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 46/86

-y

HMPP Directives
CAPS

Listing 29 shows a use of this directive. Inthe group i < f x x _ my G ralbtheparigbles called:

A “xmin” we rhabpedtogether;
A “xmax” wi | | be mapped together ;
A etc.

IShmpp < fxx_myGroup> mapbyname, xmin, xmax ymin, ymax zmin, zmax
Listing 29 - mapbyname directive example

T h enagbyname” directi ve i s emap'i vdailreenctt itvoesmul ti pl e *

I$hmpp < fxx_myGroup> mapbyname, xmin, xmax
Is equal to:

IShmpp < fxx_myGroup> map, args[*:: xmin]
IShmpp < fxx_myGroup> map, args[*:: xmax

The resident directive declares some variables as global within a group. Those variables can then be directly
accessed from any codelet belonging to the group. In practice, it means that those variables will reside in the
HWA memory. So t henesideran” ben steleen WA “f or the considered

This directive applies to the declaration statement just following it in the source code.

The syntax of this directive is:

#pragma hmpp <grp_label > resident
[,args[:: var_namel.io= [in|out|inout | none]l*
[,args[:: var_name].size={ dimsize[,dimsize]* H*

Where the directive parameters are:

A <grp_label> : a unique identifier associated to all the directives that belong to the group (definition
and use).
A args[::var_name].io=in|out|inout | none: indicates that the specified variables are either

input, output, both or wunused. By default, unqualified variables are INOUT.
The specification of this parameter drives the data transfers between the host and the HWA.
Furthermore, it allows some additional checks about the use of the data in HMPP applications (see
chapter 4.5.1 for more details about the management of this property).

A args[::var_name].size={dimsize[,dimsize]*}: specifies the size of a non scalar
parameter (an array). Each dimsize provides the size for one dimension. The set is evaluated at
runtime by an allocate directive, or by all callsite and advancedload directives within the
group.

The notation : : v ar _ nndthrleedrefixi: :,0 i ndi cates an application’s va

Note that, unlike input or output codelet arguments, resident variables are never implicitly transferred to and
from the HWA. Explicit advancedload and delegatedstore directives are required when necessary.

The Listing 30 illustrates the use of this directive. The corresponding results are presented on Listing 31.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 47/86

-y

CAPS

HMPP Directives

#include <stdio.h>
#define SIZE 10240

YY cOi 0 AAAI AOAOEIT Tt 4EA ¢cOiI Ob 1 AAAI EO 2iU' Oi Obe

#pragma hmpp <myGroup> group, target=CUDA

/l resident data declaration inside the group "MyGroup"

#pragma hmpp <myGroup> resident , args[: :tab_init_on_hwa].io=out &
#pragma hmpp & , args[::tab_init_on_host].io=in

float tab_init_on_hwa [SIZE], tab_init_on_host[SIZE];

/I declaration of the codelet "init" inside the group "MyGroup"
#pragma hmpp <myGroup> init codelet
void init ~ (intn) {

int j;

float val = 0.0;

for =0;j<n;j++) tab_init_on_hwa[j] = val++ ;

}
/I declaration of the codelet "dotSum" inside the group "MyGroup"

#pragma hmpp <myGroup> dotSum codelet
void dotSum(int n)

{
int j;
for(G=0;j<n; j*++) tab_init_on_hwalj] += tab_init_on_host[j];

}
int main(int argc, char **argv)

int i, m=SIZE;
float val = 0.0;

for (i=0;i<m;i++) tab_init_on_host[i] = val++*2;
#pragma hmpp <myGroup> allocate // allocation of the group on the HWA

/ | transfer onto the HWA of the variable tab_init_on_host
#pragma hmpp <myGroup> advancedload, args[::tab_init_on_host]

#pragma hmpp <myGroup> init callsite // call to the "init" codelet
init(m);

#pragma hmpp <myGroup> dotSum callsite // ca Il to the "dotSum" codelet
dotSum(m);

[ltransfer of the data from the HWA to the CPU
#pragma hmpp <myGroup> delegatedstore, args[::tab_init_on_hwa]
#pragma hmpp <myGroup> release // release of the HWA

I/ short display of the results

for(i=0 ;i<m ;i=i+2) {
if ((<=5)|[(i>=m -5))
printf ("tab_init_on_hwa[%d]= %4.2f \ t\ ttab_init_on_hwa[%d]= %4.2f \n",
i, tab_init_on_hwali], i+1, tab_init_on_hwali+1]);
}
return 0;}

Listing 30 - resident directive example

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 48/86

~ HMPP Directives

CAPS

$ hmpp gcc MyProgramWithResident.c - 0 MyProgramWithResident.hmpp
$./MyProgramWithResident.hmpp

tab_init_on_hwa[0]= 0.00 tab_init_on_hwa[1]= 3.00
tab_init_on_hwa[2]= 6.00 tab_init_on_hwa[3]= 9.00
tab_init_on_hwal[4]= 12.00 tab_init_on_hwa[5]= 15.00

tab_init_on_hwa[10236]= 30708.00 tab_init_on_hwa[10237]= 30711.00
tab_init_on_hwa[10238]= 30714.00 tab_init_on_hwa[10239]= 30717.00

$ gcc MyProgramWithResident.c - 0 MyProgramWithResident.gcc
$./MyProgramWithResident.gcc

tab_init_on_hwal[0]= 0.00 tab_init_on_hwa[1]= 3.00
tab_init_on_hwa[2]= 6.00 tab_init_on_hwa[3]= 9.00
tab_init_on_hwal[4]= 12.00 tab_init_on_hwa[5]= 15.00

tab_init_on_hwa[10236]= 30708.00 tab_init_on_hwa[10237]= 30711.00
tab_init_on_hwa[10238]=3 0714.00 tab_init_on_hwa[10239]= 30717.00

Listing 31 - Results of the application described Listing 30 (with hmpp and usual compiler like gcc)

HMPP currently defaultst o “ bumeeory mode. I'ts main purpose is to s
is typically much more | imited than main memor yé s. Th
such as:

A the fact that codelet name arguments must be used in all directives arguments (including at
callsite),
A it makes data sharing between callsites very verbose and error prone (see the map directive and
Listing 28 - lllegal map directive usage
A mapbyname directive)
Thanks to data mirroring, it is possible to refer to arguments with their host address, which allows to get rid of
the two above mentioned di sadvantages of “buffer” memo

Data mirroring however requires data mirrors to be declared and allocated before being used.

The following example shows how, thanks to mirroring, it is now possible to decouple the pre-loading of data
on the GPU with the call of the offloaded routine.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 49/86

-y

HMPP Directives
CAPS
/I mirror clause specifies that arguments will be manipulated as m irrored data
#pragma hmpp f codelet, target=CUDA, args[*].mirror , args[*].transfer=manual
void f(float a[100], float b[100]) {
int i;

for (i = 0; i < 100; ++i) {
}w]:amuwm

}

int main(void) {
float x[3][100];
inti, j;
#pragma hmpp f allocate

for (i=0;i<3;++i){
/I Declaration, then allocation of data mirrors
#pragma hmpp f new, data["x][i]"]
#pragma hmpp f allocate, data["x[i] "], data["x[i]"].size={100}, &
#pragma hmpp & data["x[i]"].elementsize="sizeof(float)"
/I upload of data based on the address
#pragma hmpp f advancedload, data["x[i]"]
}
for (i=0;i<3; ++i) {
for (j=0;<3; ++)){
if (i'=)){
#pragma hmpp f callsite
}KWLWH

}
}
for (i=0;i<3; ++i) {
/I download of data based on the address
#pragma hmpp f delegatedstore, data["x[i]"]
#pragma hmpp f free, data["x[i]"] // dea llocation of data mirror
#pragma hmpp f delete, data["x[i]"] // mirror descriptor release

#pragma hmpp f release
return O;
}

Listing 32 - An example of data mirroring in C

As you can see, using mirrors requires the declaration and allocation of mirrors prior to being used. The first

loop allocates several mirrors on the HWA from different lines of the array A x ,0and then uploads the
mirrored data to the HWA with an advancedload directive.

Arguments are now referred with their host address such as data["x[i]"] rather than their name in the
codelet they belong to.

HMPP' s runtime ensures that the offloaded function use
callsite arguments with previously declared mirrors.

The verbose log that corresponds to the execution of the above C example is listed hereinafter.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 50/86

-y

CAPS

HMPP Directives

Starting HMPPRT logging...

——————

——————

—

0.214183] (1) INFO :
0.214838] (1) INFO :
0.217071] (1) INFO :
0.217169] (1) INFO :
0.217339] (2) INFO :
0.217451] (2) INFO :

.. more allocations]

0.299332] (1) INFO :
0.299432] (1) INFO :
0.29960

.. more uploads ...]

0.299732] (3) INFO :
0.299790] (3) INFO :
0.391331] (3) INFO :
0.391681] (1) INFO :
0.391770] (1) INFO :
0.391971] (1) INFO :

.. more callsites ...]

0.393407] (4) INFO :
0.393458] (4) INFO :
0.393579] (4) INFO :
0.393772] (1) INFO :

0.393861] (1) INFO :

0.394057] (1) INFO :
0.394199] (3) INFO :

<

<

0] (1) INFO :

<

<

N

-- > allocate <f> at mir ror.c:12
- Acquisition of grouplet 'f' (1 CUDA devices)

0) Tesla T20 Processor

-- allocate <f> at mirror.c:12
-- > new, data <f> at mi rror.c:16
-- new, data <f> at mirror.c:16

-- > advancedload, data <f> at mirror.c:20
- Upload mirror 0x7fff60d964a0 (on device 0)
-- advancedload, data <f> at mirror.c:20

-- > callsite <f> at mirror.c:25
- Call codelet 'f' (on device 0)
-- callsite <f>atm irror.c:25

-- > callsite <f> at mirror.c:25
- Call codelet 'f' (on device 0)

-- callsite <f> at mirror.c:25

-- > d elegatedstore, data <f> at mirror.c:32
- Download mirror 0x7fff60d96180 (on device 0)
-- delegatedstore, data <f> at mirror.c:32
-- > free, data <f> at mirror.c:33
- Free mirror Ox7fff60d96180 (on device 0)
-- free, data <f> at mirror.c:33
-- > delete, data <f> at mirror.c:34

— ——— — ———

0.394259] (3) INFO : < -- delete, data <f> at mirror. c:34

[... more de -allocations ...]

-- > release <f> at mirror.c:36
- Release of grouplet 'f'

release <f> at mirror.c:36

[0.396549] (1) INFO :
[0.396605] (1) INFO :
[0.397114] (1) INFO : < -

Listing 33 - The runtime log obtained from the execution of the code from Listing 32 - An example of data mirroring in C

As you can see, thanks to data mirroring, we are able to quite simply ensure that once the callsite loop is
reached, all data is already present on the HWA.

HMPP can dispatch computations on multiple HWA, provided that the user has allocated the memory
needed for each comput at i onowrenconptterulel e€vi ces, foll owing

The owner computes rule reads that the HWA that ends up "owning" the data (because it has been allocated
on it) is the one that will carry out the computations.

In order to allocate data on a given device, all that is needed is to use the .device= oexpres s i 0 rpgtion

on an allocate directive of mirror allocationst o | et HMPP' s runtime allocate tnh
number equals the value of the expression. This implies that using multi-devices with HMPP requires the

utilization of data mirrors (see chapter 4.8.4).

Then, youcanu s e H Mpakillels directive on a loop scope to let HMPP dispatch the computations in
parallel on the allocated HWA (note: if that directive is not used, the computations will just occur on each
device alternatively, without even being used simultaneously).

The syntax of the parallel directive is the following:

51/86

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization

-y

CAPS

I$hmpp parallel [, device " 2 AAOEAAMIT O 2 #
Where the directive parameters are:

HMPP Directives

A device="device_num" . gives the number of the device on which the data should be executed. It
should not be necessary to specify it here as one should have allocated the data used within the
parall el execution fWdehthi tdrective@tametemi rr ori ng’' s

The following complete example shows how dispatch computations on several devices once the data has
been allocated in round-robin on several HWA.

#pragma hmpp f codelet, target=CUDA, args[*].mirror, args[*].transfer=manual
void f(float a[100], float b[100]) {
int i;
for (i=0; i< 100; ++i) {
afi] = afi] + (bi);
}

}
int main(void) {
float x[4][100];
float y[4][100];
inti;
#pragma hmpp f allocate

for (i=0;i<4; ++){
/I Declaration, then allocation of data mirrors on alternative devices
#pragma hmpp f allocate, data["&x[i][0]"], size={100}, &
#pragma hmpp & elementsize="sizeof(float)", device="i%2"
#pragma hmpp f allocate, data["&y[i][0]"], size={100}, &
#pragma hmpp & elementsize="sizeof(float)", device="i%2"
/I upload of data based on the address
#pragma hmpp f advancedload, data["&x[i][0]","&y[i][0]"]

}

#pragma hmpp parallel

for (i=0;i<4;++i){
#pragma hmpp f callsite
f(&x[i][0], &y[i][0]);

for (i=0;i<4; ++i) {
#pragma hmpp f delegatedstore, data["&x]i][0]"]
#pragma hmpp f free, data["&x[i][0]","&y[i][0]"]
}
#pragma hmpp f release
return O;
}

Listing 34 - An example of the utilization of the parallel directive

This section presents a set of HMPP directives to allow expressing computation for GPU as regions of code.
The goal is to avoid code restructuration to build the codelet.

A region is a merge of the codelet/callsite directives. Therefore, all the attributes available for codelet or
callsite directives can be used on regions directives.

! Be careful; do not confuse HMPP section, which refers to an array section (see chapter 4.6.4, Array
section in HMPP) with HMPP region, which refers to a block of statements.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 52/86

-y

HMPP Directives
CAPS

In C, the region directive must be inserted immediately before a block.

In FORTRAN, the region and the corresponding endregion directives must be inserted around a part of
executable code.

The constraints for writing regions are the same as for codelets (see chapter 3.1 for more details). In
addition, the control flow must remain inside the region; that is, there must not be any:

A firetufm®andfi st o@nFORTRAN);

A nofibr eaadicont i Nim@ohcyclaadi e x i (iNFORTRAN) to a loop enclosing the
region;

A i g ot ojumpinside or outside the region.

We distinguish two parts in the declaration of a region: one dedicated to the codelet parameters, the other
dedicated to the callsite parameters. So, the syntax for the definition of a region is the following:

In C language:

#pragma hmpp [< MyGroup>] [laje T region

[, args[arg_items].io= [in | out|inout | none]]*

Codelet parameters [,con d= "expr]

[, args[arg_items].transfer= [atcall|atfirstcall|manuall| auto] J*
, target= target _name [:target_name J*]

. _args| arg_items |.size={ dimsize[, dimsize[* [[©

Callsite parameters [,args[arg_items].addr=" expr"J*

, asynchronous]?

, private=[arg_items]J*

C BLOCK STATEMENTS

In FORTRAN language:

I$Shmpp [< MyGroups] [labe [] regiom

[,args[arg_items].io= [in | out]|inout | none]]*

,cond = "expr']

, args[arg_items].transfer= [atcall|atfirstcalllmanual| auto] J*
, target= target_name [: target_name]*]

,args| arg_items |.size={ dimsize| , dimsize]* }[*

[,args[arg_items].addr=" expr"]*

[, asynchronous]?

[[private=[arg_items]]*

Codelet parameters

————

Callsite parameters

FORTRAN STATEMENTS

I$hmpp [< MyGroup>] [labe] endregion

Where the directive parameters are:

A All the codelet parameters refer to parameters available for the codelet directive (see chapter 4.5.1,
codelet directive)

A All the callsite parameters refer to parameters available for the callsite directive (see chapter 4.5.3,
callsite directive);

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 53/86

-y

HMPP Directives
CAPS

A private: specifies the variables that should be re-declared to be only used in the region. Typically,
this parameter applies for loop induction variables. The HMPP private keyword usage is identical to
the OpenMP private keyword.

Since HMPP 2.4, HMPP provides users with an automatic detection of the input and output data. So, by
default, variables that are only read are seen as input (IN intent) while those that are written are seen are
both input and output (INOUT intent). To avoid useless transfer, users can override intents determined by
HMPP using the .io attributes.

HMPP offers the ii-- io -r e p o roptidn to display the intents detected by HMPP.

For instance, with the following region definition:

#pragma hmpp <group> foo region

int i;
for(i=0;i<n;++i)
r[i] = a[i]*2.0f;

for(i=0;i<n; ++i)
b[i] = b[i]*2.0f;

The fi-- io -r e p o roption provides the output below:

$ hmpp -- io - report gcc simple_region -000.c -otest.exe
In GROUP 'group’
REGION ‘foo' at simple _region - 000.c:25, function
' __hmpp_region__group__foo'
Parameter 'n' has intent INOUT
Parameter 'a’ has intent IN
Parameter 'b' has intent INOUT
Parameter 'r' has intent INOUT

As can be seen, r is detected as both an input and output.

Since we know that r is only written, its intent property can be force to output only and thus avoiding a
needless transfer from the host to the GPU, as follows:

#pragma hmpp <g> foo region, args|r].io=out

inti;
for(i=0;i<n; ++i)
rli] = a[i]*2.0f;

for(i=0;i<n;++i)
b[i] = b[i]*2.0f;

The following restrictions apply:

A Regions cannot be nested:;
A Asynchronous region must have at least a label;

A Onlyfi h mp p digdives are allowed inside the region.

Warning:

In FORTRAN, all variables accessed in a region must have their declarations in the same compilation unit.
That is, at the present time, you cannot create a region where a variable is defined in an external module.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 54/86

HMPP Directives
CAPS

Warning:
HMPP 3.0.0 only supports external functions.

For convenience, the text referencing external and native functions was left in state. In HMPP 3.0.0, only the
external function is to be considered.

Automatic inlining of functions called within codelets was already supported by HMPP. HMPP 2.5 introduces
new mechanisms to support direct calls to functions in codelets.

Functions that can be called from codelets are either hand-written CUDA/OPENCL native functions or
external C/FORTRAN functions. In codelets generated by HMPP, these functions can be seen as CUDA
__device__ functions called in CUDA kernels. External and native functions are not CUDA
kernels or library functions such as CUBLAS.

A n external function is a function def i AN dhot nenesstrityéntheour c e
same file, and called within a codelet or a region. In this context HMPP automatically generates its CUDA or
OpenCL version in an XML file.

External functions can be compiled separately from the files containing codelets or regions that call it. This
avoids code duplication when a function is used in several HMPP codelets or regions.

External functions are declared using the following HMPP directives, placed just before the function
definition:

In C:

#pragma hmpp function, targe t=list_of_targets

In FORTRAN:

I$hmpp function, target= list_of_target

The use of native and external functions requires HMPPCG directives. So complete description of external
and native functions is detailed in [R3].

22 Native functions are not available in HMPP 3.0.0. These one can be used with HMPP 2.5.x. This feature
will be restored in a future version.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 55/86

-y

HMPP Directives
CAPS

5. Supported Languages

The HMPP codelet generators do not handle full languages for C and FORTRAN. This restriction aims at
ensuring portability of the code on most HWAs (for instance, allowing pointer arithmetic in C language would
forbid generation of code for many hardware platforms) and also performance.

Moreover, it should be noted that in addition to the restrictions bring by HMPP, hardware constructors do not
offer for all targets a full support of the language. End-users should pay attention to the current limitations of
the hardware accelerators that they want to use by con

As mentioned above, the HMPP codelet generators do not handle the full C language. The HMPP codelet
generators take C99 input code so the array size can be specified in the parameter declaration. The
remainder of this section is organized as follow.

A Section 5.1.1 describes the valid C constructs for HMPP;
A Section 5.1.2 shows how codelet parameter data sizes are addressed by the HMPP codelet
generator.

In this section we describe the language constructs which are supported by the HMPP codelet generators.
The codelet prototype is preferably in C99 style in which all array sizes are specified in the declaration (see
Section 5.1.2). Typically a codelet code looks like:

1 void simplefunc(int n, float s1[1], float v2[n], float v3[n]){
2 inti;

3 A oat r = s1[0];

4 for(i=0;i<n;i++){

5 r += v2[i] * v3[i];

6
7
8

s1[0] =r;

Listing 35 - C codelet code example

Below are the language constructs supported by the HMPP codelet generators. If a construct is not
supported, the HMPP codelet generator issues an error message and no codelet implementation is
produced.

1. Atomic data types
a. char , unsigned char , short , unsigned short , integer , long , long long , unsigned
integer , unsigned long , unsigned long long ;
b. float |, double , complex
2. Data structures
3. Language constructs
a. All arithmetic, shift and comparison operations.

b. for loops with simple induction variables. The following styles of for loops are supported:

for (i=lowbound ; i<highbound ; i++){...}
for (i=lowbo und ; i<=highbound ; i++){...}
for (i=lowbound ; i<=highbound ; i = i+s){...}

Where lowbound and highbound are invariant in the loop. The step value s is an integer constant.
Furthermore, the induction variable i cannot be modified in the loop body.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 56/86

-y

HMPP Directives
CAPS

4. Conditional statements if() ... else ...
5. Calls to intrinsic (see Section Erreur! Source du renvoi introuvable. for the list of supported

intrinsic) and functions.

The following constructs are not supported in a codelet:
1. switch and case statements.

2. Function pointers.

Warning:Initialization of structure using C99 style is not supported.

To implement the communications between the host and HWAs, it is necessary to provide the HMPP API
runtime with the size of the data to be transferred to/from the HWAs. Listing 36 illustrates this.

Warning:By default, HMPP assumes that no aliasing exists between codelet parameters.

1 /*C99 syntax */

2 #pragma hmpp csmain codelet, args[a].io=in, &

2 #pragmahmpp & args[b].io=in, &

2 #pragmahmpp & argsfr].io=out

3 void csmain(unsigned int S, float r[S], float a[S], float b[S]) {
5 unsigned i;

6 for (i=0;i<S;i++){

8 rli]=b[i]/s grt(a[i));

9 }

10 }

Listing 36 - Parameter data size passing using C99 for codelets

HMPP supports the inlining of functions with the following restrictions:

The definition of the inlined function must be available in the compilation scope of the codelet;
The inlined function must not have any HMPP directives;

The inlined function must not be recursive;

The inlined function must not access global variables

> > D>y >

HMPP supports the following atomic functions inherited from gcc and icc compilers.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 57/86

-y

CAPS

HMPP Directives

Name

Type

type _ sync_fetch_and_add(type *ptr, type value)

int or unsigned int

type __sync_fetch_and_sub(type *ptr, type value)

int or unsigned int

type _ sync_fetch_and_or(type *ptr, type value)

int or unsigned int

type __sync_fetch_and_and(type *ptr, type value)

int or unsigned int

type _ sync_fetch_and_xor(type *ptr, type value)

int or unsigned int

Table 5 - Supported atomic intrinsic functions

These built-ins functions perform operation atomically according to their definition and return the value that

had previously been in memory.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization

58/86

HMPP Directives
CAPS

The HMPP codelet generators do not support the full FORTRAN language. The subset taken into account is
similar to the C subset described in Chapter 5.1. The remainder of this section is organized as follow:

A Section 5.2.1 describes the supported FORTRAN language constructs.
A Section 5.2.2 indicates how codelet parameter data sizes are addressed by the HMPP codelet
generators.

In this section we describe the language constructs that are supported by the HMPP codelet generators.
Typically a codelet code looks like:

1 !'$hmpp simple codelet, target=CUDA
2 SUBROUTINE simple(n,m,inv,inm,outv)
3 IMPLICIT NONE

4 INTEGER, INTENT(IN) :: n,m

5 REAL, INTENT(IN) :: inv(n)

6 REAL, INTENT(IN) :: inm(m,n)

7 REA L, INTENT(OUT) :: outv(m,n)
8 INTEGER :i)j

9

10

11 DOj=1,n

12 DOi=1m
13 outv(ij) = inv(j) * inm(,j)

14 ENDDO
15 ENDDO
16

17 END SUBROUTINE simple

Listing 37 - FORTRAN codelet code example

The language constructs presented below are the ones supported by the Fortran HMPP codelet generators.
If a construct is not supported, the code generator issues an error and no codelet is produced.

Explicit declaration in codelet

ThedMPLICITNO NEE statement is required in FORTRAN codel et.
in FORTRAN codelets.

Supported Data Types

The table below summarizes the scalar data types that are supported within the codelets and shows how
they are interpreted.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 59/86

-y

HMPP Directives

CAPS
Name Type Semantic
ABS(x) REAL*n or INTEGER*n Absolute value
LOG(n) REAL*n Natural logarithmic
LOG10(n) REAL*n Base- 10 logarithmic function
SQRT(n) REAL*n Square root
MIN(a,b,...) REAL*n or INTEGER*n Minimum
MAX(a,b,...) REAL*n or INTEGER*n Maximum
MOD(a,b) INTEGER*n a modulo b
EXP(a) REAL*n Base - E exponential
COS(a) REAL*n Cosine
SIN(a) REAL*n Sine
TAN(a) REAL*n Tangent
ACOS(a) REAL*n Arc - Cosine
ASIN(a) REAL*n Arc - Sine
ATAN(a) REAL*n Arc - Tangent
COSH(a) REAL*n Hyperbolic Cosine
SINH(a) REAL*n Hyperbolic Sine
TANH(a) REAL*n Hyperbolic Tangent
ACOSH(a) REAL*n Inverse Hyperbolic Cosine
ASINH(a) REAL*n Inverse Hyperbolic Sine
ATANH(a) REAL*n Inverse Hyperbolic Tangent
IAND(a,b) INTEGER*n Bitwise AND
IOR(a,b) INTEGER*n Bitwise OR
IEOR(a,b) INTEGER*n Bitwise Exclusive -OR
NOT(a) INTEGER*n Bitwise NOT
REAL(a) Convert a to REAL
DBLE(a) Convert a to DOUBLE PRECISION

(i.e. REAL(8))

INT(a) Convert a to INTEGER
INT1(a) Convert a to INTEGER(1)
INT2(a) Convert a to INTEGER(2)
INT4(a) Convert a to INTEGER(4)
INT8(a) Convert a to INTEGER(8)

Current restrictions:

Table 6 - Supported FORTRAN data types

A The KIND of all types is hard-coded to the values used by most FORTRAN compilers. In the future,
they will be configurable for each FORTRAN compiler,

A User defined types via the TYPEstatements are allowed with several restrictions,

A The CHARACTERype and the character constants are only allowed for LEN=1. Virtually no operation
except comparison is allowed on characters so they are of limited usage except when passed as
arguments to the codelet.

Using

Fortranos

User

defi ned

types

(UDT)

The Alignment and Size of All UDT Members Must Be Known at Compile

Time

Scalar members are always allowed:

TYPE Sample

I NTEGER :: x,y,z

REAL :: a,b,c
END TYPE Sample

Array members are allowed assuming that their dimensions are known by the HMPP compiler. In practice,
this means that the INTEGER expressions used to specify the array member shapes should only contain

literal constants and scalar PARAMETERS known by HMPP:

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization

60/86

-y

HMPP Directives
CAPS
INTEGER, PARAMETER :: N=100, P=200
TYPE Sample
INTEGER :: x(4,N+1)
REAL :: y(N:P)

END TYPE Sample

All basic FORTRAN types are supported (INTEGER, LOGICAL, REAL, COMPLEX and CHARACTERf any
kinds).

Restriction:

The CHARACTERpe is only supported with a LEN of 1.

Members can also be of another user-defined type assuming, of course, that a type does not attempt to
include itself directly or indirectly.

TYPE T1
INTEGER :: a,b,c
END TYPE T1
TYPET2
TYPE(T1) :: x,y
END TYPE T2
TYPE T3
TYPE(T1) :: x,y
TYPE(T3): z M ILLEGAL
END TYPE T3

Members with the POINTER or the ALLOCATABLE Attribute Are Not
Allowed

POINTER and ALLOCATABLEiImply a reference to a memory area which, in the general case, is not

managed by HMPP (the host and the HMPP target typically have distinct memory spaces) except in the
situation where the structure is defined as a codel et
codelet.

In the case where the pointer is defined as a local variable of the codelet, this construction is not supported
by HMPP.

Local ALLOCATABLE arrays are supported in HMPP 3.x.

UDT Can Be Imported From Modules

The limitations are the same than for PARAMETER values imported from modules: the Fortran file defining
the module must have been previously compiled with HMPP.

MODULE MyTypes
TYPE Point
REAL :: x,y,z
END TYPE Point
END MODULE MyTypes

USE MyTypes

I$hmpp project codelet, target=CUDA

SUBROUTINE project(points)
TYPE(Point), INTENT(IN) :: points

END SUBROUTINE project(points)

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 61/86

-y

CAPS HMPP Directives
Known Limitations to the support of user-defined-types

Intel Compiler and SEQUENCE

A UDT declaration may start by a SEQUENCE statement to indicate that the compiler is not allowed to
reorder the members. The FORTRAN standard does not clearly specify the semantic of the SEQUENCE
statement (or of its absence). In practice, it does seem to have any effect in most compilers with the
exception of the Intel compiler (ifort) where SEQUENCE removes all padding normally inserted to meet the
alignment constraints of the members.

Let's consider, for example, the following UDT declaration:

TYPE Data
SEQUENCE
INTEGER(1) :: a ! 8 bitinteger at byte offset 1
REAL4):: b I 32bit real at byte offset 2

END TYPE Data

The overall size of this UDT is 5 bytes. Without the SEQUENCE statement, a padding of 3 bytes would be
inserted between the members a and b, and the overall size would be 8 bytes.

Accessing misaligned data-types is slower but legal on Intel processors. This is not the case on most of the
HMPP target (especially GPUs where misaligned accesses are illegal).

For that reason, the SEQUENCE statement is not supported in HMPP codelets when using the Intel
FORTRAN compiler.

Alignment of COMPLEX Data in CUDA

In the current version of HMPP, the COMPLEX FORTRAN types are implemented using the CUDA native
types float2 and double2 that respectively represent a pair of 'float' and a pair of 'double’.

Unfortunately, float2 and double2 have different alignment constraints than their FORTRAN counterparts
(e.g. float2 are aligned to multiples of 8 bytes while COMPLEX(4) are typically aligned like REAL(4) on
multiples of 4 bytes). The specific alignment constraints of float2 and double2 can increase the
performance of regular arrays of complex elements but as a side effect, they also break the compatibility
between the implementation of UDT on the host and on the CUDA target.

Consider, for example, the following type:

TYPE Value
REAL :: x
COMPLEX ::y
REAL :z
END TYPE Value

On most host FORTRAN compilers, that structure is implemented by:

9 a 4 bytes REAL at offset 0
9 a 8 bytes COMPLEX at offset 4
9 a 4 bytes REAL at offset 12

The current implementation in HMPP CUDA is different:

1 A4 bytes 'float' at offset 0
1 A4 bytes padding at offset 4

1 A8 bytes 'float2' at offset 8

1 A4 bytes 'float' at offset 16

1 A4 bytes padding at offset 20 (to make the structure size a multiple of 8, the float2 alignment size)

In practice, UDT containing COMPLEX members are still possible in HMPP/CUDA if and only if those
members are aligned on the host to a multiple of the COMPLEX type.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 62/86

~ HMPP Directives

CAPS

For instance, the previous UDT can be made compatible with CUDA by inserting some dummy padding
members before the misaligned complex and at the end of the type.

TYPE Value
REAL :: x
INTEGER(4) :: paddingl
COMPLEX ::y
REAL :z
INTEGER(4) :: padding2
END TYPE Value

In future version, this manual padding will not be strictly required but may be recommended to improve
performances.

Declarations

Declarations can be provided using the old F77 or the new F90 form:

INTEGER a,b !F77 form
INTEGER ::c,d !F90 form

The attribute DIMENSION can also be used to specify array shapes:

INTEGER = A(10)
INTEGER,DIMENSION(10) :: B

Parameters

PARAMETERtatements and attributes are supported for scalar objects only.

INTEGER, PARAMETER :: N=42
INTEGER M
PARAMETER (M = 42)

Inlined functions

HMPP supports the inlining of functions with the same restrictions as for C language (see chapter 0).

Intrinsic functions

Intrinsic functions used in codelets must have been declared through the use of the INTRINSIC FORTRAN
statement. The example below illustrates the use of intrinsic functions in FORTRAN codelets.

A

REAL(8),DIMENSION(N) :: V
real(8),dimension(N,N) :: Loc
INTEGER :: J

INTRINSIC :: LOG, COS, SIN

A

Other Type Attributes and Declarations

Most type attributes introduced by Fortran90 are currently not supported in codelets (POINTER VOLATILE,
TARGET...). A noticeable exception is INTENT which is in fact recommended for all codelet arguments.

COMMON, EQUIVALENCE, BLOCKDATANd all declaration statements that may create aliasing between
variables are not allowed in codelets.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 63/86

-y

CAPS HMPP Directives
Arrays

Arrays as codelet arguments

Array bounds of arguments should be fully specified using constants or other scalar integer arguments of the
codelet.

Current restrictions:

A Scalar integer arguments used to specify an array bound shall not be modified within the codelet.
Ideally, they should have the INTENT(IN) attribute,

A Scalar integer arguments used to specify an array bound must appear before that array in the
argument list,

Below is a typical example:

SUBROUTINE codelet(m,n,A,B,C)
INTEGER, INTENT(IN) ::m,n
INTEGER, INTENT(INOUT) :: A(100), B(m,n), C(0:m*n -1)

END SUBROUTINE

Listing 38 - FORTRAN array declaration in codelet

The following forms of arrays are not allowed:

Assumed-size array arguments as in A(*) or B(100,*)

Assumed-shape and deferred-shape array arguments as in A(:) or B(3:) since the upper
bound is not specified

A Arrays with an ALLOC ATABLE or POINTER attribute

A
A

Remark: Array arguments of the form A(:m) are allowed since their lower bound are by default equal to one.

Arrays as local variables in codelet

Two kinds of local arrays are allowed in codelets:

A Arrays whose shape is entirely specified using constants or integer arguments of the codelet.
A Arrays with the ALLOCATABLE attribute

Below is a typical example:

SUBROUTINE codelet(m,n,A)
INTEGER, INTENT(IN) ::m,n

REAL :: TMP1(m,0:n+1)
REAL, ALLOCATABLE :: TMP2(:,:)

END SUBROUTINE

Listing 39 - Local FORTRAN arrays in codelet

The ALLOCATE and DEALLOCATEstatements are allowed within codelet to manage arrays with the
ALLOCATABLEattribute. However, they can only take place outside the gridified loops.

The most frequently used implicit functions are supported:

A LBOUND
A UBOUND
A SIZE

IF statements
The following forms of IF statements are supported:

1. IF .. ENDIF constructs optionally with ELSE IF and ELSE

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 64/86

~ HMPP Directives

CAPS

IF (A>B) THEN
c=1

ELSE IF (A<B) THEN
Cc=-1

ELSE
C=0

ENDIF

2. Logical IF statements:

IF (A==B) C=0

Current restrictions:

A SELECT CASEconstructs are currently not supported.
A GOT® are not supported as well as arithmetic IF statements that are in fact disguised GOT®.
Loops

The following forms of loops are supported:
1. DOstatements with index, start, end and an optional step. The index and all 3 expressions shall be of
type integer.
2. DO WHILE statements;
3. Standalone DO - so a potentially infinite loop.

A DOconstruct must be terminated by an ENDDGstatement. The old F77 form using a termination label is not
allowed. EXIT and CYCLEstatements are allowed within DOconstructs.

Current restrictions:

A The step, if any, must be a simple constant (such as 1 or -2).

A No loop name shall be specified to an EXIT or CYCLEstatement. They are applied to the first outer
loop.

A The computation of the number of iterations in a loop of the form (a) is assumed not to overflow when
computed using the type of the index. In practice, e.g. for INTEGER*4, the number of iterations shall
not be greater than 2*31 - 1 = 2147483647

Modules

HMPP brings a preliminary support of FORTRAN modules. The objective is to provide users with the most
frequently constructions used in FORTRAN applications. Thus, scalar PARAMETERvariables of types
INTEGER, LOGICAL, REAL and COMPLEX defined in modules can be directly used in HMPP codelets.

However, this first implementation mainly focuses on INTEGER parameters. Thus, the following operations
are supported on INTEGERtype only:

A Constant definitions. Evaluation of expressions is supported for the usual INTEGER arithmetic
operatorsfi + ,-,*, /[O

MODULE foo

INTEGER, PARAMETER :: N=24, M=5

INTEGER, PARAMETER :: P= (N+1)*(M - 5))/(M+N)
END MODULE foo

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 65/86

~ HMPP Directives

CAPS
A I NTEGER comparison and LOGI CAL operators (.OR.

MODULE foo

INTEGER, PARAMETER :: M = 34

INTEGER, PARAMETER :: N = 22

LOGICAL, PARAMETER :: M_IS_BIGGER = M>N

LOGICAL, PARAMETER :: M_EQUALS_N =M .EQ. N

LOGICAL, PARAMETER :: DBBUG = .TRUE.

LOGICAL, PARAMETER :: M_IS_SMALLER = .NOT. (M_IS_BIGGER .OR. M_EQUAL_N)
END MODULE foo

A Intrinsic functions to query type kind information (SELECTED_INT_KIND, SELECTED REAL_KIND
and KIND)

MODULE foo
INTEGER, PARAMETER :: INT4 = SELECTEDINT_KIND(4)
INTEGER, PARAMETER :: INT10 = SELECTED_INT_KIND(10)
INTEGER, PARAMETER :: INT14 = SELECTED_INT_KIND(14)

INTEGER, PARAMETER :: FLOAT_4_7 = SELECTED_REAL_KIND(4,7)
INTEGER, PARAMETER :: FLOAT_P10 = SELECTED_REAL_KIND(P=10)
INTEGERPARAMETER :: FLOAT_R20 = SELECTED_REAL_KIND(R=40)

INTEGER, PARAMETER :: FLOAT = KIND(1.0EOQ)
INTEGER, PARAMETER :: DOUBLE = KIND(1.0D0)
END MODULE foo

Because of the difficulty to ensure consistent rounding in floating point arithmetic, operations on REAL or
COMPLEXdata types are not yet supported. It is however possible to define parameters of REAL or
COMPLEX types as long as their expressions only contain:

REALconstant (e.g. 1.2, 1.2D0, 1.2_4, 1.2 _INT4)
COMPLEXonstant;

Unary operator ii- i ;

Parenthesis;

A References to other parameters of the same type.

> >

REAL conversions whether they are implicit or explicit are not supported. In practice that means that the
expression must be of the exact same type than the parameter. For instance, the example below is correct if
we assume that the default REALkind is 4:

REAL(4), PARAMETER :: X1 = 3.1415
REAL , PARAMETER :: X2 =3.1415_4

However, the following equivalent declarations containing an implicit and an explicit cast to REAL(8) will not
be able to be evaluated:

REAL(8), PARAMETER :: Y1 = 3.1415 @
REAL(8), PARAMETER :: Y2 = REAL(3.1415,kind=8)

In practice, one could write the declaration which is similar even though it is not semantically equivalent:

REAL(8), PARAMETER :: Y =3.1415_8

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 66/86

AN

-y

HMPP Directives
CAPS

Note: FORTRAN module support will be improved in future releases, so some of these limitations
should be removed.

Operations

Arithmetic operations are currently limited to scalars. Support for arrays should be available in future
releases.

All native operators are supported:

A Arithmetic: + - [***,
A Comparison: > <>=< == /= (and their 'dotted' forms: .GT. .LT. etc.);
A Logical: .NOT. .AND. .OR. .EQV. .NEQV.

Function Calls

Only calls to intrinsic functions listed below are supported. All arguments should be of scalar type.

Name Type Semantic

ABS(x) REAL*n or INTEGER*n Absolute value

LOG(n) REAL*n Natural logarithmic

LOG10(n) REAL*n Base- 10 logarithmic function

SQRT(n) REAL*n Square root

MIN(a,b,...) REAL*n or INTEGER*n Minimum

MAX(a,b,...) REAL*n or INTEGER* n Maximum

MOD(a,b) INTEGER*n a modulo b

EXP(a) REAL*n Base- E exponential

COS(a) REAL*n Cosine

SIN(a) REAL*n Sine

TAN(a) REAL*n Tangent

ACOS(a) REAL*n Arc - Cosine

ASIN(a) REAL*n Arc - Sine

ATAN(a) REAL*n Arc - Tangent

COSH(a) REAL*n Hyperbolic Cosine

SINH(a) REAL*n Hyperbolic Sine

TANH(a) REAL*n Hyperbolic Tangent

ACOSH(a) REAL*n Inverse Hyperbolic Cosine

ASINH(a) REAL*n Inverse Hyperbolic Sine

ATANH(a) REAL*n Inverse Hyperbolic Tangent

IAND(a,b) INTEGER*n Bitwise AND

IOR(a,b) INTEGER*n Bitwise OR

IEOR(a,b) INTEGER*n Bitwise Exclusive -OR

NOT(a) INTEGER*n Bitwise NOT

REAL(a) Convert a to REAL

DBLE(a) Convert a to DOUBLE PRECISION
(i.e. REAL(8))

INT(a) Convert a to INTEGER

INT1(a) Convert ato INTEGER(1)

INT2(a) Convert a to INTEGER(2)

INT4(a) Convert a to INTEGER(4)

INT8(a) Convert a to INTEGER(8)

Table 7 - Supported Intrinsic functions

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 67/86

-y

HMPP Directives
CAPS

Warning

In FORTRAN, local variables can be stored in global memory and be initialized at startup. Then they keep
their value between function calls. This is not the case in codelets where variable declared locally are
assumed to be strictly local (as in C).

The following statements are not supported in HMPP Fortran codelets:

A WHERE, SELECT, FORALL, GOTO, CONTAINS, INCLUDE;
A 1/0O statements: OPEN, CLOSE,
A Memory statements: =>,

A Arithmetic if

To implement the communication between the host and the HWAs, it is necessary to provide the HMPP
runtime with the size of the data to be transferred to/from the HWAs. This is performed using the FORTRAN
syntax with the array bound specified as an expression of the codelet parameters as shown in the example
presented in Section 5.2.1. In other words, a parameter declaration such as A(*) is not supported. The
INTENT(IN|INOUT|OUT) clause is mandatory.

HMPP FORTRAN parser should accept most of the syntaxes described in the F2003 norm.
However, the following F2003 syntaxes are known to be unsupported even outside codelets:
CLASS, EXTENDS, PASS and other TYPE-related features introduced in F2003

A The ENUM construct.
A The SELECT TYPE construct.
A The ASSOCIATE construct.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 68/86

-y

HMPP Directives
CAPS

6. HMPP Codelet Generators

The HMPP codelet generators are used by the HMPP compilers to generate HWA implementations of the
codelets.

HMPP includes different generators according to the considered architecture:

A CUDA for NVIDIA architecture;
A OPENCL for NVIDIA or AMD ATI Stream architecture.

It should be noted that HMPP codelet generators are based on the state-of-the-art of SDK and drivers
marketed by hardware constructors. Thus HMPP inherits same limitations.

Warning:

HMPP 3.0.0 only supports the CUDA target for codelet generation. The OpenCL target will be supported
current Q1 2012 (currently available in HMPP 2.5.x).

For convenience, the text referencing the two targets was left in state. In HMPP 3.0.0, only the CUDA target
is to be considered.

This generator produces CUDA implementation of HMPP codelets to be executed on NVIDIA GPUs.

This generator is used when the target CUDAis specified as shown in the following codelet declaration:

C: #pragma hmpp mycodelet codelet, args[vout].io=inout, target= CUDA
FORTRAN: 'hmp mycodelet codelet, args[vout].io=inout, target= CUDA

This generator produces OpenCL implementation of HMPP codelets to be executed on NVIDIA GPUs as
well as AMD ATI Stream GPU supporting OpenCL framework.

This generator is used when the target OPENCLs specified as shown in the following codelet declaration:

C: #pragma hmpp mycodelet codelet, args[vout].io=inout, target= OPENCL
FORTRAN: Thmpp mycodelet codelet, args[vout].io=inout, target= OPENCL

To be correctly handled by the different tools of the HMPP workbench, codelet files (either hand-written or
automatically generated) must respect a specific naming convention. The general name format of HMPP
codelets and libraries are described below.

With the CUDA keyword specified, generated file names follow the rules below.

Generated target source code

The generated file has the following name:

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 69/86

-y

HMPP Directives
CAPS

[label]_[target].[ext] .[target _ext]

Where:

A [label] is:
0 The label of the group in the case of a group,
0 The label of the codelet in the case of a single codelet,
0 The name of the function in the case where no label is defined.
A [target] isf ¢ u diathe case of CUDA.
A [ext] isthe file extension. Value is :
o i h mgithe case of a group;
o f h mcimcase of codelet only
o fihmfo: in case of codelet without any labels.
A [target ext] : inithe caecoiCiDA.

Generated library

Following the generation of the source code, a dynamic library is generated to be loaded by the HMPP
runtime.

The generated dynamic library has the following name:

[label]_[target].[ext]

Where:

A [label] is:

0 The label of the group in the case of a group,

0 The label of the codelet in the case of a single codelet,

o0 The name of the function in the case where no label is defined.
[target] isfi ¢ u d ia the case of CUDA.
[ext] is the file extension. Value is :

o fi h mgimthe case of a group;

o N h mcicase of codelet only

o fhmfo: in case of codelet without any labels.

A
A

So with the previous rules, for the following code:

1 #pragmahmppr pclabel codelet target=CUDA, ...
2 void myFunctionToSpeedup(float *in,float *out){

3codelet body...

4}

The source codelet file will be rpclabel_cuda .hmc.cu and the corresponding library file will be
rpclabel_cuda .hmc

Unlike the CUDA target, two files are generated for the OPENCL target:

A One dedicated to the initialization of the openCL context and which may be seen as a wrapper for the
launch of the opencl kernel. In case of group, this file is named:

[grp_label] _[ta rget].[ext]

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 70/86

-y

HMPP Directives
CAPS

A The other corresponding to the kernel to execute on the HWA. In case of group, this file is named:

[grp_label]_[target].cc - kernels.[ext]

So, the preceding rules still apply but with the following modifications:

A [target] is opencl,
A [ext] i cc” for the wrapper file and “.cl” for the kerr

So for the following code:

1 #pragma hmpp rpclabel codelet target=CUDA, ...
2 void myFunctionToSpeedup(float *in,float *out){
3 codelet body...

4}

The generated files will be:

A The source codelet file will be rpclabel_opencl.cc;
A The kernel file will be rpclabel_opencl.cc - kernel.cl;
A And the corresponding library file will be rpclabel_opencl.so.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 71/86

-y

HMPP Directives
CAPS

7. Compiling HMPP Applications

The HMPP development workbench provides developers with HMPP compilers in order to easily build HMPP
applications. HMPP compilers are available for C and FORTRAN?. They are used:

A to preprocess HMPP annotated applications,
A to extract and to generate HWA codelets,
A and finally to compile and link the HMPP application.

To know the list of supported Operating System and compilers:

A For Linux platform, please refer to[R5];

Warning:

We introduce in this section the main concepts concerning the compilation of HMPP application. For some
historical reasons and to keep readability, examples are mainly given for Linux platforms.

HMPP 3.0.0 only supports Linux platform. Windows OS will be supported current Q2 2012 (currently
available in HMPP 2.5.x).

In terms of use, the HMPP compiler workflow is really close to traditional compilers. However, as illustrated
in Figure 8, we can distinguish two main paths:

A The left one (in Figure 8) is dedicated to the compilation of the main application which will be
executed on the host processor (as in traditional compilers). In this case, we will designate the
compiler used under the name host compiler,
A The right one (in Figure 8) is dedicated to the codelet generation and compilation. The codelet are
generated under the form of shared libraries in order to be loaded by the HMPP runtime during the
execution of the application. In this case, we will designate the compilers under the name of HMPP
Codel et Géoer ather @ener ati on ol artdhwea r ceo dveel nedt fmr theacnodm pti H
compilation of the codelet using the provided hardware vendor tools.

FORTRAN compilers are available on Linux platforms only.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 72/86

Yy 4 . .
HMPP Directives
CAPS

C / FORTRAN
HMPP annotated

application source files

HMPP
Workbench

CUDA

OpenCL

J HMPP HMPP codelet
_preprocessor _J generator
.. Generic host Hardware vendor
runtime : compiler compiler

HMPP codelets
building

- HMPP codelets libraries

Figure 8 - HMPP compiler workflow

@

HMPP codelet
containers

Host application
building

Compiling a HMPP program is done by using the hmpp command followed by the appropriate compiler
depending on the considered language (C or FORTRAN):

$ hmpp gce program.c - 0 program.exe

Or:

$ hmpp ifort program.fo0 - 0 program.exe
Or

$ hmpp cl program.c - 0 program.exe

Like with usual compilers, the default output file name is a.out.

The hmpp commands successively runs the HMPP preprocessor to process the directives by inserting calls
to the HMPP runtme and t hen invoke the wuser’s speci fglioathn nat i v
executable.

hmpp extracts the marked codelets from the application sources and generates their hardware accelerated
implementation as shared libraries with the appropriate HMPP codelet generator.

7.2. Common Command Line Parameters

The HMPP compiler runs as follow:

$ hmpp [HMPP_OPTIONS] HOST_COMPILER [HOST_COMPILER_OPTIONS] files

Here is the list of the available command line options for HMPP compiler.

7.2.1. General Options

General options are:

A -t, -- temp DIRNAME: sets the temporary directory (default is /tmp),

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 73/86

-y

HMPP Directives
CAPS
A -k, -- keep:does not remove temporary files,
A i d[x]* -- debug : set HMPP verbosity. A numerical value can be specified to increase the level of

the verbosity of the messages displayed.
A The command line below illustrates the use of the —d option with a high value of verbosity (level 3).

$ hmpp Zd3 icc myHMPPApplication.c

Most of the standard compiler options are supported by HMPP. These one are directly given on the
command line and follow the specification of the compiler.

The A-d OHMPP' s option can be notified on the command | ine
during the compilation stage. Thus all the commands executed will be displayed allowing the user to check
that the right options are given to the compiler.

$hmpp Zdifort 203 myHMPPApplication.f90

Note t hatiVE® o pt iruasnpreprocessor only. With this option, only the preprocessing of the file is
done, resulting in source files where the HMPP directives have been translated into calls to the HMPP
runtime. The preprocessed files can then be compiled with the usual general purpose compiler

Compiler options that would change the semantic of the code should not be used. Typical example for
FORTRAN compilers are the following:

- fall - intrinsics

-fd -lines -as-code, -fd -lines -as-comments

- fdefault - double -8, -fdefault -integer -8, -fdefault -real -8
- fmodule - private

- fbackslash

- fcray - pointer

- fdollar - ok

P I A e

These options are mainly to support FORTRAN dialects.

This option provides users with some results of analysis done by HMPP. Currently, HMPP offers:

A -“—jo-r e p ooptibr to display the intents detected by HMPP

These options can be used to modify the default behavior of the HMPP command. These options are the
following:

A -f, - force :forces codelet file overwrite,
A - codelet -off :does not generate codelets,
A -- codelet -build :generates and compiles codelets only,
A -- codelet -generate : generates codelet only,
A -- codelet -compile codelet_filename : compiles codelet only. The specified file must be a
codelet source file.
Pl ease Agpéndix A-HEPP‘Compilation examples” f or det ail ed use exampl es.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 74/86

HMPP Directives
CAPS

Warning:
HMPP 3.0.0 only supports external functions.

For convenience, the text referencing external and native functions was left in state. In HMPP 3.0.0, only the
external function is to be considered.

In order to compile a file that uses HMPP native functions in codelets, the XML file that describes them
needs to be passed to the HMPP compiler using the -- native option:

-- native=[PATH]/my_xml_file.xml [, [PATH]/my_other_xml_file.xml]*

For example:

hmpp -- native=my_native_function.xml gcc sum.c - 0 sum.exe

When HMPP detects the use of a native function, the following HMPP DPL0716 message appears during the
compilation:

hmppcg: [Message DPL0716] sum.c:21: Using function 'my_function_name' provided at line 2 of
"my_xml_file.xml"

This message indicates that a native function, called in a codelet, has been found in the provided XML file
and that this function is going to be used in the generated code.

The generated codelet file is then compiled with the target compiler. In case of programming errors in the definition of the

native function in the XML file (code syntax, wrong prototype, wrong number O r type of parameters .

compiler should report them (note that with OpenCL, the compilation of the kernel is done at the execution
time).

The files defining external functions need to be compiled before the ones that call them. So, the compilation
process has two phases:

A First compile the files defining external functions. This generates their XML description file.
A Then compile the files that use external functions.

When an external function is generated HMPP emits the following message:

hmpp: [Info] Generated XML filename is "hmppcg_functions.xml"

%4 See documentation [R3] to have a complete description of HMPP native functions.

% sSee documentation [R3] to have a complete description of HMPP external functions.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 75/86

-y

CAPS

Compilation of Files Defining External Functions

HMPP Directives

The following command create or update in the [PATH directory mEectidns.dme "natmlkeat
contains all the target versions (CUDA/OpenCL) indicated in the declaration.

$ hmpp Z- function=[PATH]/myFunctions.xml gcc Zc sum.c Z0 sum.o

Compilation of files that call external functions

By using the following command, HMPP will look for the definition of the external functions in the
“‘myFunctions.xml " f i | e | oRA&H direttory (currénhifempty):

$ hmpp Z function=[PATH]/myFunctions.xml gcc Zc extern.c Zo extern.o

In HMPP, the final codelet code is generated with the proprietary hardware accelerator compiler. In some
context, it may be useful to forward some specific options to this compiler.

For NVIDIA architecture, options can be passed to the nvcc compiler (NVIDIA CUDA Compiler driver) by
using the options fi- -nvcc-opti onso.

For example the following command line will forward the optionsfi pt x ax =iar ¢ h, s m tolth® avcc
compiler:

$ hmpp -d -- nvcc-options - Xptxas=-v, - arch,sm_13 ifort main.f90 - 0 main.exe

A

hmpp: [Info] Running command: nvcc -- cudafe - options -- no_warning saxpy_cuda.cu -shared - Xptxas=-v
-archsm_13 -o saxpy_cuda.so -- compiler -options -fPIC

ptxas info : Compiling entry function '_Z13hmppcg_loop0_ILj32ELj4EEVifPfSO_'

ptxas info : Used 3 register s, 48+48 bytes smem, 2000 bytes cmem][0], 8 bytes cmem[1]

A

Another possible approach is to use an environment variable as for example the NVCCFLAGS.

NVCCFLAGS=03 - use_fast_math' hmpp gfortran - 03 sgemm1.f90 -0 sgemml.exe

Various others options can be used with HMPP:

A i-hmpp- version : displays HMPP version number,

A T-hmpp- full -version : displays HMPP full version message,

A -h, -- help :displays an help message and exit,

A i-licenses : displays information about HMPP licenses found in the system and exit.

During compilation the _ HMPPmacro is set by default. Its value is equal to the current HMPP version. For
instance -D__ HMPP=20500for HMPP 2.5.0 or -D__ HMPP=30@00 for HMPP 3.0

The HMPP environment variables available for Linux and Microsoft Windows platforms are respectively
described into:

A Document [R5] for Linux platforms;

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 76/86

-y

HMPP Directives
CAPS

8. Running HMPP Applications

The execution of the application is based on the HMPP runtime library that manages the correct execution of
the HMPP application according to the user’s environme

For further details concerning the execution of HMPP program, readers will refer to:

A [R5] for Linux platforms;

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 77/86

-y

HMPP Directives
CAPS

9. Supported Platforms and Compilers

For a complete knowledge of:

A The operating systems on which you can run HMPP;
A The Software Development Kit (SDK) provided by constructors and supported by HMPP;
A The different compilers that you can use with HMPP

Please refer to:

A [R5] for Linux platforms.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 78/86

ry

HMPP Directives
CAPS

10. HMPP Installation

Instructions to set HMPP on your system are respectively described into:

A Document [R5] for Linux platforms.

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 79/86

~ HMPP Directives

CAPS

callsite

Codelet

CUDA

Device

General purpose compiler

Guards

Hardware Accelerators (HWA)

HMPP

HMPP codelet

HMPP Group of codelets

HMPP codelet container

HMPP codelet generator

HMPP compiler

HMPP Codelet Compiler

HMMP Host Compiler

In HMPP context, designates a codelet call in the application

A routine to be remotely executed in a HWA. A codelet is a pure
function. It is a small self-contained subset section of executable
code whose dynamic execution consumes a significant amount of
time

Programming language for the NVIDIA CUDA compatible hardware

A particular HWA device

The usual compiler for general purpose cores (i.e. gcc, icc, ifort, ...),

Predicates expressed using HMPP directives to define runtime
conditions to execute a codelet RPCin a HWA

Devi ces used to speedup applic
considered are GPUs, FPGAs, or streaming units (SSE, ...). The
HWA is not assumed to share memory with the main processor

A short name for HMPP development workbench

Contains a pure function that can be executed in a HWA using
HMPP. The HMPP codelet also contains the HMPP runtime
callbacks

A group of codelets designates the execution of several codelets
based on a same hardware allocation and with the possibility to
share data.

HMPP codelet container is a file containing the HMPP runtime
callbacksand the HMPP target codelet

Code generator that takes a C codelet as input and translates it into
the HWA input code

The HMPP compiler drives all the HMPP passes to build a hybrid
application from host application compilation to codelet generation
and compilation.

Compiler used for the compilation of the HMPP codelets as opposed
to the HMPP Host Compiler that is used to produce the binary host
application.

Compiler used to produce the binary host application as opposed to
the HMPP Codelet Compiler which designates the compiler used to

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 80/86

CAPS

HMPP development workbench

HMPP directives

HMPP native codelet

HMPP native function

HMPP external function

HMPP preprocessor

HMPP program

HMPP region

HMPP runtime

HMPP runtime callbacks

HMPP target codelet

HMPP template generator

Label

main thread

Remote Procedure Call (RPC)

compile the codelets.

A set of tools to help developers programming application that make
use of HWAs

Set of directives to program the use of HWAs in application source

HMPP native codelet is the original function that is annotated using
the HMPP directives

Hand-written CUDA or OPENCL functions provided by end-user and
called from HMPP codelet

Function defined in the source code (C or FORTRAN) and called
within an HMPP codelet or region. HMPP automatically generates its

CUDA or OpenCL version in an XML file.

The HMPP preprocessor translates the HMPP directives into calls to
the HMPP runtimelibrary

A C or Fortran program that contains HMPP directives

Defines a set of contiguous statements to be executed on the HWA.

Runtime library linked with the HMPP program to manage the
execution of the HMPP codelet.

API that provides the HMPP runtime with all the necessary services
to execute a target codelet

HMPP target codelet is the hardware dedicated implementation of
the codelet

HMPP template generator creates an empty HMPP codelet container

A label identifying a group of directives defining the declaration
execution of a codelet.

Process that executes the original code

In HMPP, a RPC denotes the remote execution of a codelet in a
HWA

~y HMPP Directives

CAPS
[R1] HMPPWorkbench-3.0_Basics.pdf, CAPS entreprise
[R2] HMPPWorkbench-3.0_HMPP_Directives_ReferenceManual.pdf, CAPS entreprise.
[R3] HMPPWorkbench-3.0_ HMPPCG_Directives_ReferenceManual.pdf, CAPS entreprise
[R4] HMPPWorkbench-3.0_Windows_Manual.pdf, CAPS entreprise
[R5] HMPPWorkbench-3.0_Linux_Manual.pdf, CAPS entreprise
[R6] HMPPWorkbench-3.0_LicenselnstallationGuide.pdf, CAPS entreprise

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 82/86

~y HMPP Directives

CAPS
Figure 1 - Workflow overview of the HMPP WOrKDENCHcoooiiiiiii e 9
Figure 2 - Synchronous versus asynchronOUS RPCooiiiiiiiiiiiiiiccc et e e s s e e e e e s s srrnre e e e e e s ennnes 12
Figure 3 - HMPP MEMOIY MOUEIuiiiiiiiii e cee e st e e e e e e st e e e e e e s st e e e e e e e e s e ssnntaneeeeeeeaannnes 13
Figure 4 - Description of parameters and arguments in HMPP dir€Ctivescccccovicivieeiie e 17
Figure 5 — An example of the utilization of the with directive: using the with directive in the mirror allocation
(00D Of LiStING 34 0N PAGE D4 ...ttt et e bt e e e st e e e st et e e e aa b et e e e anbr e e e e anbr e e e e nnrns 19
Figure 6 - HMPP output execution with all the transfers ... 43

Figure 7 - HMPP output executon—e f f ect of the automatic .c.l.aus.e..44n code

Figure 8 - HMPP compiler WOIKFIOWcoiuiiiiiiiiie et 73

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 83/86

~y HMPP Directives

CAPS
Listing 1 - Codelet defiNItIONooiiiiiiei ettt e et e et e e s anbr e e e nres 11
Listing 2 - Wrong codelet definition due to the use of a global variablecccccooiiiiii e, 11
Listing 3 - Wrong codelet definition due to aliasing between parametersccccceevvvccivieeeee s 11
Listing 4 - HMPP codelet SOUrce COAe EXamPIE........ciiuuiiiiiiie e iiciiiieie e e st e e e e e s s s e e e e e e e e s snntrneeeeeeeaaannes 14

Listing5-Di recti ve’' s paramet er a radne aodaetnotation.s.....(..c.a.s..e....018

Listing 6 - Simple codelet AeCIArationcc.uuiiiiiee i e e e s e s e e e e e s e snnrrereeeeeeeaannes 23
Listing 7 - Codelet declaration INSIAE @ QIOUPveiieeiiiiiiiiiiieee e cesiee e e e e e s s ettt e e e e e e e s st e e e e e e e s e s snnsrnaeeeeeessannnes 23
Listing 8 - Multiple codelet declarations (stand-alone codelet CONtEXt).......ccuvviiiieiiiiiiiiiie e 24
Listing 9 - release directive example (case of stand-alone codelet NOtation)ccccocvverieerieeiiiee e 27
Listing 10 - allocate directive example (case of stand-alone codelet notation)ccccceevvviiiiiieeieenninens 28
Listing 11 - advancedload directive example (case of stand-alone codelet notation)c.cccovcvveeennne. 30
Listing 12 - lllegal use of the advancedload directive - (the actual arguments of the codelet is not in the
scope of the advancedload dIrECHIVE).uiiiiiiiiiiiiie e e e s e e e e e e s e snnereeeeas 31
Listing 13 - delegatedstore AIrECHIVE EXAMPIE ...eeeeiiiie s 32
Listing 14 - Array section specified with a shape (extract) (FORTRAN)cuvviiiiieieiieeeieeeeeereeeeererererenenennnen. 35
Listing 15 - Array section in advancedload directive - Transfer of 1 column (FORTRAN)........cvvvvvvvvvvvevennnnnns 35
Listing 16 - Array section in advancedload directive - Transfer of 1 row (FORTRAN)........ccvvvivviivieieveeeinnnnnnns 36
Listing 17 - atcall transfer POlICY @XAMPIE...........vviiiiiiiiieiiieeeeeeeeeeeeee ettt eeeeaaeeeseeaseseessssssssssssssssssssnnnsennnes 37
Listing 18 - atfirstcall transfer POlICY @XamPIEooi i 38
Listing 19 - manual transfer POlICY EXAMPIEciiiiiiiii e 39
Listing 20 - automatic transfer clause in codelet definition ..o, 40
Listing 21 - disregard directive example - codelet definition (EXIrACE)ccceeeiriieeiiiiieei e, 42
Listing 22 - disregard directive example - CallSIte [EVEIoevviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e aeaeaeaeaenes 42
Listing 23 - Codelet definition with automatic data transfer validatedoovvvviviiiiiiiiiiiiiiiiiieeeeeieeens 43
Listing 24 - disregard directive example - callsite level, introduction of two function calls............ccccevvvvvennnnes 44
Listing 25 - disregard directive applied 0N StAtEMENLSovviiiiiiiiiiiiiiiieieeeeeeeeeeee e eeeeeeeeeeeeereaerereaeaarraene 44
Listing 26 - disregard directive applied on a block of statements...............eeeviiiiiiiiiiiiiiiiiiiieeeeeeeeee e 45
Listing 27 - map direCtiVE @XAMPIEooo ittt e e 46
Listing 28 - lllegal Map dir€CHVE USAUEueeiiiiiiiee ittt ettt e et e e et e e e e nnba e e e e nnnees 46
Listing 29 - mapbyname direCtive @XamPIEoooiiiiiiiiiie e a7
Listing 30 - resident direCLIVE EXAMIPIEviiii ittt e et e e et e e e e nabn e e e e b 48
Listing 31 - Results of the application described Listing 30 (with hmpp and usual compiler like gcc) 49
Listing 32 - An example of data Mirroring iN Coooiiiiiiiiiiie e 50
Listing 33 - The runtime log obtained from the execution of the code from Listing 32 - An example of data
o a1 goTqTaTo T o G PP PO PPPPPRPRN 51
Listing 34 - An example of the utilization of the parallel direCtiveccccvvviiiiiiiiii e, 52
Listing 35 - C codelet COUE EXAMPIEoiiiiiiiie ittt e bt e e s st e e s aabe e e e e anbaeeeennbeas 56
Listing 36 - Parameter data size passing using C99 for COdeletscccoviiiiiiiiiii i, 57
Listing 37 - FORTRAN codelet COUE EXAMPIE.......iii ittt ettt e e e snbe e e e b 59
Listing 38 - FORTRAN array declaration in COUEIBTuuiiiiiiiiiiiiie e 64

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 84/86

stanc

Y 7/ 4 HMPP Directives

CAPS
Listing 39 - Local FORTRAN arrays iN COUEIELceiiiiiiiiiiiie e ee e e e e e e e e e e s e s ee e e e e e e e nnnes 64

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 85/86

~y HMPP Directives

CAPS

Table 1 - HMPP DIFECHIVESeeeiiiiiiee ittt ettt e ettt e e e e e s e ettt et e e e e e e s e nbabeeeeaaeeesaannnbaeeeaaeeeaann
Table 2 - Access to HMPP arguments according to their SCOPEooccvvviiiiie i
Table 3 - Intent in FORTRAN language versus HMPP Input/Output parameter policy..........cccccceeernnnns
Table 4 - C language parameter versus HMPP Input/Output parameter poliCy.......cccccceevvviivvieereeennnnnns
Table 5 - Supported FORTRAN Aata tYPES.....ccoiiiiiiiiiiie e ie st et e e e s s st e e e e e e s ssantaeee e e e s e snnrnrneeeeaeseanns

Table 6 - Supported INtriNSIC FUNCHONSuiiiiii i r e e e e s s rarreeeeseanns

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization

86/86

